Metal decorations on graphene as a hydrogen storage material

Main Article Content

Suphagrid Wongprakarn
Ekaphan Swatsitang
Pornjuk Srepusharawoot

Abstract

        Metal binding energies of various metals such as Li, Be, B, Na, Al, Mg and Ca trapped on graphene and hydrogen adsorption energies corresponding to these metals are calculated by using the density functional theory. Our results reveal that Li, Be, Na, Al and Ca are trapped on the graphene with metal binding energies of about 3.49–3.87 eV. This binding energy is high enough to hold these metals on graphene at room temperature. Moreover, we also calculated the hydrogen adsorption energy when a hydrogen molecule is adsorbed on these considered metals and found that Li gives the highest hydrogen physisorption energy compared to all considered metals, namely about 0.136 eV. Consequently, Li is regarded as the best choice for adsorbing hydrogen molecule.

Article Details

How to Cite
Wongprakarn, S., Swatsitang, E., & Srepusharawoot, P. (2017). Metal decorations on graphene as a hydrogen storage material. Asia-Pacific Journal of Science and Technology, 18(1), 153–170. Retrieved from https://so01.tci-thaijo.org/index.php/APST/article/view/82827
Section
Research Articles

References

[1] Lochan RC, Head-Gordon M. Computational studies of molecular hydrogen binding affi nities: the role of dispersion forces, electrostatics, and orbital interactions. Phys Chem Chem Phys. 2006;8: 1357-1370.
[2] Henwood D, Carey JD. Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotube. Phys Rev B. 2007:75:245413.
[3] Dinca M, Long JR. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Chem Int Ed. 2008;47: 6766-6779.
[4] Srepusharawoot P, Araujo CM, Blomqvist A, Scheicher RH, Ahuja R. A comparative investigation of H2 adsorption strength in Cd- and Zn-based metal organic framework-5. J Chem Phys. 2008;129: 164104.
[5] Rowsell JLC, Yaghi OM. Strategies for hydrogen storage in metal organic frameworks. Angew Chem Int Ed. 2005;44: 4670-4679.
[6] Yang FH, Lachawice Jr AJ, Yang RT. Adsorptionof spillover hydrogen atoms on single-wall carbon nanotubes. J Phys Chem B. 2006;110: 6236-6244.
[7] Mavrandonakis A, Klontzas E, Tylianakis E, Froudakis GE. Enhancement of hydrogen adsorption in metal-organic framework by the Incorporation of the sulfonate group and Li cations. A multiscale computational study. J Am Chem Soc. 2009;131: 13410-13414.
[8] Blomqvist A, Araujo CM, Srepusharawoot P, Ahuja R. Li-decorated metal-organic framework 5: A route to achieving a suitable hydrogen storage medium. Proc Natl Acad Sci. U.S.A. 2007;104: 20173-20176.
[9] Srinivasu K, Ghosh SK. Tuning the metal binding energy and hydrpgen storage in Alkali metal decorated metal organic frameworks-5 through Boron doping: A theoretical investigation. J Phys Chem. 2011;115: 16984-16991.
[10] Srepusharawoot P, Blomqvist A, Araujo CM, Scheicher RH, Ahuja R. Hydrogen binding in alkali-decorated iso-reticular metal organic framework-16 based on Zn, Mg, and Ca. Int J Hydrogen Energy. 2011;36: 555-562.
[11] Li C, Li J, Wu F, Li SS, Xia JB, Wang LW. High capacity hydrogen storage in Ca decorated graphyne: A first principles study. J Phys Chem C. 2011;115: 23221-23225.
[12] Lee H, Ihm J, Cohen ML, Louie SG. Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett. 2010;10: 793-798.
[13] Cha MH, Nguyen MC, Lee YL, Im J, Ihm J. Iron-decorated, functionalized metal organic framework for high-capacity hydrogen storage: First-principles calculations. J Phys Chem C. 2010;114: 14276-14280.
[14] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys : Condens Matter. 2009;21: 395502.
[15] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77: 3865-3868.
[16] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations.Phys Rev B. 1976;13: 5188.
[17] Wang ZF, Li Q, Zheng H, Ren H, Su H, Shi QW and Chen J. Tuning the electronic structure of graphene nanoribbons through chemical edge modifi cation: A theoretical study. Phys Rev B. 2007:75:113406.
[18] Arellano JS, Molina LM, Rubio A, Alonso JA. Density functional study of adsorption of molecular hydrogen on graphene layers J Chem Phys. 2000;112: 8114-8119.
[19] Kolmann SJ, Chan B, Jordan M. Modeling the interaction of molecular hydrogen with Lithium-doped hydrogen storage materials. Chem Phys Lett. 2008;467: 126-130.
[20] Henkelman G, Arnaldsson A, Jonsson H. A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci. 2006;36: 354-360.(21) Sun Q, Jena P, Wang Q, Marquez M. First-principles study of hydrogen storage on Li12C60. J Am Chem Soc. 2006;128: 9741-9745.