The Factors Affecting Organization Working Efficiency in the Manufacturing and Logistics Industries

Main Article Content

Karnjanaporn Boonchu
Sutthipat Assawavichairoj

Abstract

The objective of this research is studying the factors affecting organization working efficiency, specifically: 1) waste reduction in processes, 2) employee motivation, and 3) the combined effect of waste reduction in processes and employee motivation. The research was conducted using a quantitative approach, involving a survey of 400 participants, comprising general staff, leaders and supervisors. The reliability of the questionnaire was confirmed with a Cronbach’s alpha coefficient exceeding 0.7, ensuring reliability. Data were analyzed using multiple regression analysis was employed for hypothesis testing, complemented by qualitative research through in-depth interviews with 6 individuals, including managers, executives, and entrepreneurs. All survey questions were supported by prior studies. The sample group consisted of individuals working in logistics or manufacturing companies in Bangkok, Samut Prakan, Chonburi, and Rayong, aged 18 and above, and of all genders. The quantitative findings indicate that four factors related to 1st objective waste reduction significantly impact efficiency: motion, overproduction, defects, and unused talent. Additionally, five factors related to 2nd objective employee motivation were found to have a significant influence: achievement, responsibility, base wage or salary, policies and rules, and coworker relationships. The 3rd objective, when combining the two independent variables, the analysis showed that only employee motivation variables explained efficiency more effectively than the combined model. The qualitative findings supported these results, highlighting that interviewees considered over processing and transportation as the most critical wastes affecting organization’s efficiency. In terms of motivation, base wage & salary and career advancement were emphasized as the most influential factors.

Article Details

Section
Research Articles

References

กระทรวงเกษตรและสหกรณ์. (2560). ยุทธศาสตร์เกษตรและสหกรณ์ ระยะ 20 ปี (พ.ศ. 2560 – 2579). สำนักงานเศรษฐกิจการเกษตร. https://waa.inter.nstda.or.th/stks/pub/2017/20171121-moac-thailand-4.pdf

ชัยวัช โซวเจริญสุข. (สิงหาคม 2565). อุตสาหกรรมอาหารในอนาคต. วิจัยกรุงศรี, ธนาคารกรุงศรีอยุธยา จำกัด (มหาชน). https://www.krungsri.com/getmedia/4d8ef6f9-0203-421f-8578-3664c0dd35ca/RI_Future_Food_220830_TH.pdf.aspx

ดนุวัศ สาคริก และ ปนันดา จันทร์สุกรี. (2018). ผลกระทบของปัจจัยทางเศรษฐกิจ สังคม สถาบัน และการเปลี่ยนแปลงสภาพภูมิอากาศต่อรายได้และรายจ่ายในภาคการเกษตรของเกษตรกรไทย. วารสารรัฐประศาสนศาสตร์, 16(2), 57-85. https://gspajournal.com/wp-content/uploads/2019/01/3.-The-Impact-of-Socio-Economic-Institutional-and-Climate-Change-Factors-on-Agricultural-Income-and-Expenditure-of-Thai-Farmers.pdf

วิษณุ อรรถวานิช. (27 ธันวาคม 2565). ความสามารถในการแข่งขันของภาคเกษตรไทยตกต่ำเข้าขั้นโคม่า ! The Active. https://theactive.thaipbs.or.th/data/agriculture-competion

ศุภสิน อิทธิพัทธ์วงศ์. (มกราคม 2568). ผลกระทบจากสงครามการค้า 2.0 ต่อเศรษฐกิจไทย (Research Intelligence). วิจัยกรุงศรี, ธนาคารกรุงศรีอยุธยา. https://www.krungsri.com/getmedia/f40e39d0-5cd8-4807-ba1c-4eaf730685e1/RI_Trade_War_250120_TH.pdf.aspx

เสาวณี จันทะพงษ์ และ อโนทัย พุทธาร. (4 เมษายน 2023). การเปลี่ยนแปลงระบบห่วงโซ่อุปทานโลกหลังโควิด-19 และทำมกลางปัญหาภูมิรัฐศาสตร์: โครงสร้างการผลิตและการใช้เทคโนโลยีของไทย. คอลัมน์แจงสี่เบี้ย (ฉบับที่ 6/2023). ธนาคารแห่งประเทศไทย. https://www.bot.or.th/content/dam/bot/documents/th/research-and-publications-pdf/articles-and-publications/articles/download/2023/chaengsibia/chaengsibia-2023-no6-global-supply-chain.pdf

สำนักงานเศรษฐกิจการเกษตร. (2568). ข้อมูลเปิดภาครัฐด้านการเกษตร ปี 2567. ศูนย์ข้อมูลเกษตรแห่งชาติ สำนักงานเศรษฐกิจการเกษตร. https://oae.go.th/uploads/files/2025/07/04/358d9218afee6b6b.pdf

Adner, R., & Kapoor, R. (2016). Innovation ecosystems and the pace of substitution: Reexamining technology S-curves. Strategic Management Journal, 37(4), 625-648. https://doi.org/10.1002/smj.2363

Ahmad, L., & Nabi, F. (2021). Agriculture 5.0: Artificial intelligence, IoT and machine learning. CRC Press.

Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., & Smith, D. L. (2021). Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, 139, Article 110691. https://doi.org/10.1016/j.rser.2020.110691

Avery, M. L., Krietz, B., & Falcon, R. (2020). Foodweb 2020: Forces shaping the future of food. Institute for the Future.

Aznar-Sánchez, J. A., Velasco-Muñoz, J. F., García-Arca, D., & López-Felices, B. (2020). Identification of opportunities for applying the circular economy to intensive agriculture in Almería (South-East Spain). Agronomy, 10(10), 1499. https://doi.org/10.3390/agronomy10101499

Benbi, D. K. (2017). Nitrogen balances of intensively cultivated rice-wheat cropping systems in original green revolution states of India. In Y. P. Abrol (Ed.), The Indian nitrogen assessment (pp. 77-93). Elsevier. https://doi.org/10.1016/B978-0-12-811836-8.00006-9

Bulut, C., Nazli, M., Aydin, E., & Haque, A. U. (2021). The effect of environmental concern on conscious green consumption of post-millennials: The moderating role of greenwashing perceptions. Young Consumers, 22(2), 306-319. https://doi.org/10.1108/YC-10-2020-1241

Chopra, J., Rangarajan, V., Rathnasamy, S., & Dey, P. (2024). Life cycle assessment as a key decision tool for emerging pretreatment technologies of biomass-to-biofuel: Unveiling challenges, advances, and future potential. Bioenergy Research, 17, 857-876. https://doi.org/10.1007/s12155-024-10741-8

Chui, M., Evers, M., Manyika, J., Zheng, A., & Nisbet, T. (2023). The Bio Revolution: Innovations transforming economies, societies, and our lives. McKinsey Global Institute.

Deshpande, M. V., Kumar, N., Pillai, D., Krishna, V. V., & Jain, M. (2023). Greenhouse gas emissions from agricultural residue burning have increased by 75% since 2011 across India. Science of the Total Environment, 904, Article 166944. https://doi.org/10.1016/j.scitotenv.2023.166944

EOS Global Expansion. (2025, January 15). Japan's smart agriculture revolution: Technology adoption in rural farming. EOS Agriculture Today. https://www.eosglobalexpansion.com/japan-smart-agriculture

FAO. (2024). The state of food security and nutrition in the world 2024: Financing to end hunger, food insecurity and malnutrition in all its forms. Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/items/ebe19244-9611-443c-a2a6-25cec697b361

Feng, Y., & Rosa, L. (2024). Global biomethane and carbon dioxide removal potential through anaerobic digestion of waste biomass. Environmental Research Letters, 19(2), Article 024024. https://doi.org/10.1088/1748-9326/ad1e81

Fielding, M., & Aung, M. T. (2018). Bioeconomy in Thailand: A case study. Stockholm Environment Institute.

Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024). Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. Journal of Sensor and Actuator Networks, 13(4), Article 39. https://doi.org/10.3390/jsan13040039

Future Market Insights. (2025). Global organic food market outlook 2025-2035. Future Market Insights Ltd.

Gadanakis, Y. (2024). Advancing farm entrepreneurship and agribusiness management for sustainable agriculture. Agriculture, 14(8), 1288. https://doi.org/10.3390/agriculture14081288

Geels, F. W. (2019). Socio-technical transitions to sustainability: A review of criticisms and elaborations of the Multi-Level Perspective. Current Opinion in Environmental Sustainability, 39, 187-201. https://doi.org/10.1016/j.cosust.2019.06.009

Giller, K. E., Hijbeek, R., Andersson, J. A., & Sumberg, J. (2021). Regenerative agriculture: An agronomic perspective. Outlook on Agriculture, 50(1), 13-25. https://doi.org/10.1177/0030727021998063

Gómez-Godínez, L. J., Martínez-Romero, E., Banuelos, J., & Arteaga-Garibay, R. I. (2021). Tools and challenges to exploit microbial communities in agriculture. Current Research in Microbial Sciences, 2, Article 100062. https://doi.org/10.1016/j.crmicr.2021.100062

Goold, H. D., Wright, P., & Hailstones, D. (2018). Emerging opportunities for synthetic biology in agriculture. Genes, 9(7), Article 341. https://doi.org/10.3390/genes9070341

Green America. (2025). Regenerative agriculture: Climate solutions on the ground. Green America. https://www.greenamerica.org/climate-solutions/regenerative-agriculture

He, L., Zhou, L., Qi, J., Song, Y., & Jiang, M. (2024). The role of digital finance embedded in green agricultural development: Evidence from agribusiness enterprises in China. Land, 13(10), 1649. https://doi.org/10.3390/land13101649

Herrero, M., Thornton, P. K., Mason-D'Croz, D., Palmer, J., Bodirsky, B. L., Pradhan, P., Barrett, C. B., Benton, T. G., Hall, A., Pikaar, I., Bogard, J. R., Bonnett, G. D., Bryan, B. A., Campbell, B. M., Christensen, S., Clark, M., Fanzo, J., Godde, C. M., Jarvis, A., Loboguerrero, A. M., Mathys, A., McIntyre, C. L., Naylor, R. L., Nelson, R., Obersteiner, M., Parodi, A., Popp, A., Ricketts, K., Smith, P., Valin, H., Vermeulen, S. J., Vervoort, J., van Wijk, M., van Zanten, H. H. E., West, P. C., Wood, S. A., & Rockström, J. (2021). Articulating the effect of food systems innovation on the Sustainable Development Goals. The Lancet Planetary Health, 5(1), e50-e62. https://doi.org/10.1016/S2542-5196(20)30277-1

IMARC Group. (2024). Organic food market: Global industry trends, share, size, growth, opportunity and forecast 2024-2033. IMARC Group.

IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 184 pp., https://doi.org/10.59327/IPCC/AR6-9789291691647

Kareska, K. (2023). Innovations in modern agribusiness. https://ssrn.com/abstract=4405855

Klayson, S., & Jirakajohnkool, S. (2022). Factors related to the digital agricultural technology knowledge of young smart farmers in the central region of Thailand. Journal of Science Innovation for Sustainable Development, 4(2), 13-26. https://ph01.tci-thaijo.org/index.php/JSISD/article/view/251016

Kristoffersen, E., Mikalef, P., Blomsma, F., & Li, J. (2021). The effects of business analytics capability on circular economy implementation, resource orchestration capability, and firm performance. International Journal of Production Economics, 239, Article 108205. https://doi.org/10.1016/j.ijpe.2021.108205

Lal, R. (2020). Regenerative agriculture for food and climate. Journal of Soil and Water Conservation, 75(5), 123A-124A. https://doi.org/10.2489/jswc.2020.0620A

Li, Q., & Wang, Z. (2024). Impact of contract farming on green technological efficiency of farmers: A comparative study of two contract organizational models. Frontiers in Sustainable Food Systems, 8, Article 1368997. https://doi.org/10.3389/fsufs.2024.1368997

Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2020). From Industry 4.0 to Agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Transactions on Industrial Informatics, 17(6), 4322-4334. https://doi.org/10.1109/TII.2020.3003910

Maffezzoli, F., Ardolino, M., Bacchetti, A., Perona, M., & Renga, F. (2022). Agriculture 4.0: A systematic literature review on the paradigm, technologies and benefits. Futures, 142, Article 102998. https://doi.org/10.1016/j.futures.2022.102998

Market.us. (2024). Taiwan smart agriculture market analysis and forecast 2024-2030. Market.us Research.

MarketsandMarkets Research. (2022). China precision farming market by technology, offering, application, and region - Global forecast to 2030. MarketsandMarkets. https://www.marketsandmarkets.com/PressReleases/china-precision-farming.asp

Massruhá, S., Leite, M., Oliveira, S., Molin, J., Carvalho, P., & Maciel, D. (2020). Digital agriculture technologies for sustainable development. Embrapa Agricultural Informatics.

McKinsey & Company. (2024). Regenerative agriculture: Economic potential and implementation challenges. McKinsey Global Institute.

Meechoovet, Y., & Siriwato, S. (2023). Thailand's smart agriculture and its impacts on Thai farmers: A case study of smart agriculture in Ayutthaya, Thailand. Asian Political Science Review, 7(1), 1-17. https://doi.org/10.14456/apsr.2023.1

Mignogna, D., Ceci, P., Cafaro, C., Corazzi, G., & Avino, P. (2023). Production of biogas and biomethane as renewable energy sources: A review. Applied Sciences, 13(18), Article 10219. https://doi.org/10.3390/app131810219

Ministry of Agriculture, Forestry and Fisheries. (2024). Sustainable agriculture promotion measures in Japan. MAFF Japan.

Monteiro, A., Santos, S., & Gonçalves, P. (2021). Precision agriculture for crop and livestock farming - Brief review. Animals, 11(8), Article 2345. https://doi.org/10.3390/ani11082345

National Science and Technology Development Agency. (2021). BCG model: Fostering sustainable development in Thai economy. NSTDA. https://www.nstda.or.th/en/images/pdf/ BCG_Booklet1.pdf

Neves, M. F., Casagrande, B. P., Cambaúva, V., Teixeira, G. O., & Toledo, P. J. F. (2023). Agriculture 6.0: A new proposal for the future of agribusiness. Revista de Gestão Social e Ambiental, 17(9), 1-16. http://dx.doi.org/10.24857/rgsa.v17n9-021

Neves, M. F., et al. (2024). Sustainable agriculture transformation in developing countries. Academic Press.

One Step Beyond. (2025). Japan's agricultural technology revolution: Smart farming solutions. One Step Beyond Analytics.

Papakonstantinou, G. I., Voulgarakis, N., Terzidou, G., Fotos, L., Giamouri, E., & Papatsiros, V. G. (2024). Precision livestock farming technology: Applications and challenges of animal welfare and climate change. Agriculture, 14(4), Article 620. https://doi.org/10.3390/agriculture14040620

Pigford, A. A. E., Hickey, G. M., & Klerkx, L. (2018). Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions. Agricultural Systems, 164, 116-121. https://doi.org/10.1016/j.agsy.2018.04.007

Rosete, A. R. M. (2020). Property, access, exclusion: Agribusiness venture agreements in the Philippines. Journal of Rural Studies, 79, 65-73. https:// doi.org/10.1016/j.jrurstud.2020.08.037

Saiz-Rubio, V., & Rovira-Más, F. (2020). From smart farming towards agriculture 5.0: A review on crop data management. Agronomy, 10(2), Article 207. https:// doi.org/10.3390/agronomy 10020207

Schattman, R. E., Rowland, D. L., & Kelemen, S. C. (2023). Sustainable and regenerative agriculture: Tools to address food insecurity and climate change. Journal of Soil and Water Conservation, 78(2), 33A-38A. https://doi.org/10.2489/jswc.2023.1202A

Siwal, S. S., Zhang, Q., Devi, N., Saini, A. K., Saini, V., Pareek, B., & Thakur, V. K. (2022). Recovery processes of sustainable energy using different biomass and wastes. Renewable and Sustainable Energy Reviews, 150, Article 111483. https://doi.org/10.1016/j.rser.2021.111483

Srivetbodee, S., & Igel, B. (2021). Digital technology adoption in agriculture: Success factors, obstacles and impact on corporate social responsibility performance in Thailand's smart farming projects. Thammasat Review, 24(2), 149-170. https://doi.org/10.14456/tureview.2021.22

The Nation. (2025, January 20). Thailand's carbon credit market hits new highs in Q1 of fiscal 2025. The Nation Thailand. https://www.nationthailand.com/sustaination/40045871

United Nations Environment Programme. (2024). Promoting a sustainable agriculture and food sector in Thailand. UNEP.

United Nations Framework Convention on Climate Change. (2015). Key aspects of the Paris Agreement. UNFCCC. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

van Bussel, L. M., Kuijsten, A., Mars, M., & van 't Veer, P. (2022). Consumers' perceptions on food-related sustainability: A systematic review. Journal of Cleaner Production, 341, Article 130904. https://doi.org/10.1016/j.jclepro.2022.130904

Vargas, D. B., Pinto, T. P., & Lima, C. Z. (2023). Green transition: The bioeconomy and conversion of green into value. Observatório de Conhecimento e Inovação em Bioeconomia, Fundação Getulio Vargas. https://agro.fgv.br/sites/default/files/2023-09/eesp_relatorio_agro-bioeconimia_eng-ap1_v1%20Completo.pdf

Velasco-Muñoz, J. F., Aznar-Sánchez, J. A., Batlles-delaFuente, A., & Fidelibus, M. D. (2022). Circular economy in agriculture: A systematic literature review. Resources, Conservation and Recycling, 179, Article 106028. https://doi.org/10.1016/j.resconrec.2021.106028

Vijayakumar, S., Murugaiyan, V., Ilakkiya, S., Kumar, V., Sundaram, R. M., & Kumar, R. M. (2025). Opportunities, challenges, and interventions for agriculture 4.0 adoption. Discover Food, 5, Article 265. https://doi.org/10.1007/s44187-025-00576-3

Walter, P., & Herther, M. (2017). Nine trends transforming the agribusiness industry. L.E.K. Consulting Executive Insights, 19(62), 1-6. https://www.lek.com/sites/default/files/insights/pdf-attachments/1962_Agribusniess_Trends_LEK_Executive_Insights.pdf

Weihrich, H. (2018). The TOWS matrix—A tool for situational analysis. Long Range Planning, 15(2), 54-66. https://doi.org/10.1016/0024-6301(82)90120-0

World Bank. (2024). Food security update: World Bank response to rising food insecurity. World Bank Group. https://www.worldbank.org/en/topic/agriculture/brief/food-security-update

Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes, 7(1), Article 36. https://doi.org/10.3390/pr7010036

Zhang, H., Feng, Y., Jia, Y., Liu, P., Hou, Y., Shen, J., Zhu, Q., & Zhang, F. (2024). China's agriculture green development: From concept to actions. Frontiers of Agricultural Science and Engineering, 11(1), 20-34. https://doi.org/10.15302/J-FASE-2023512