Study of the photocatalytic and antibacterial activity of tio2 powder synthesized by microwave-assisted sol-gel method

Main Article Content

Weerachai Sangchay

Abstract

TiO2 powder was prepared by microwave-assisted sol-gel method. The powder was refluxed at 180 W for 1, 2 and 3 h and dried at 180 W for 1 h by a conventional microwave oven. Several analytical techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and surface area measurement (BET) were employed to characterize the synthesized powder. Photocatalytic activity of the powder was examined via the degradation of methylene blue (MB) solution under UV irradiation for a certain time. The efficiency of antibacterial activity was evaluated by the inactivation of Staphylococcus aureus (S. aureus). The results showed that only anatase TiO2 was observed and the as-prepared powder exhibited the agglomeration of spherical nanoparticles with crystallite sizes of 20.7, 13.8 and 9.3 nm when the refluxed time was 1, 2 and 3 h, respectively. The highest efficiency for the photocatalytic and antibacterial activities was 66.68 and 91.67%, respectively, belonging to those powders using the reflux time of 3 h.

Article Details

How to Cite
Sangchay, W. (2016). Study of the photocatalytic and antibacterial activity of tio2 powder synthesized by microwave-assisted sol-gel method. Asia-Pacific Journal of Science and Technology, 21(1), 67–76. https://doi.org/10.14456/kkurj.2016.6
Section
Research Articles

References

[1] Fujishima A, Rao T.N, Tryk D.A. Titanium dioxide photocatalysis. J. Photoch. Photobio. C. 2000; 1:1-21.
[2] Shamalah M, Rangabhatla L.A,Rangabhatla V.P. Photocatalytic effect of TiO2 and the effect of dopants on degradation of brilliant green. Sustainable Chem. Pro.2013; 1(4): 1-8.
[3] Magnum L.J, Joao S.N, Gianluca T,Paulo P.P, Maria S.D. Angela M.F.Superhydrophilic self-cleaning
surface based on TiO2 and TiO2/SiO2 c o m p o s i t e f i l m s f o r photovoltaic module cover glass.
App. Adh. Sci. 2015; 3(5): 1-9.
[4] Sangchay W, Ubonchonlakat K. Photocatalytic disinfection of water containing E. coli using Fe3+ doped
TiO2 thin films coated on glass fibers. Dig. J. Nanomat. Biostruc.2015; 10(1): 283-290.
[5] Sangchay W. Fe doped TiO2 thin films coated on glass fiber to inhibit bacterial of E. coli
preparation by sol-gel method. Dig.J. Nanomat. Biostruc. 20145; 9(4),1593-1601.
[6] Chiodo L, Salazar M, Romero A, Laricchia S, Della Sala F, Rubio A. Structure, electronic, and optical properties of TiO2 atomic clusters:an ab initio study. J. Chem. Phy.2011; 135: 244704-10.
[7] Landmann M, Rauls E, Schmidt W.G. The electronic structure and optical response of rutlie, anatase
and brookite TiO2. J. Phys. Condens. Matter. 2012; 24:195503-6.
[8] Biswajit C, Amarjyoti C. Local structure modification and phase transformation of TiO2
nanoparticles initiated by oxygen defects, grain size, and annealing temoerature. Int. Nano Lett. 2013; 3(55): 1-9.
[9] Akbar E, Ameneh E. Effect of crystal structure on photoinduced superhydrophilicity of copper grafted TiO2
nanostructure thin film. Bull. Mater. Sci. 2013; 36(1): 59-63.
[10] Jia L, Xiaolin L. Shu Z, Yongsheng L,Xianfeng C. Anatase TiO2 nanotube powder film with high crystallinity
for enhanced photocatalytic performance. Nanoscale Res. Latt.2015; 10(110): 1-6.
[11] Paola A.D, Bellardita M, Plamisano L.Brookite, the least known TiO2 photocatalyst. Catal. 2013; 3: 36-73.
[12] Suwarnkar M.B, Dhabbe R.S, Kadam A.N, Garadkar K.M. Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Cera. Inter. 2014; 40: 5489-5496.
[13] Huang C.H, Yang Y.T. Doong R.A. Microwave-assisted hydrothermal synthesis of mesoporous anatase
TiO2 via sol-gel process for dyesensitized solar cells. Micropor. Mesopor. Mater. 2011; 142(2-3):473-480.
[14] Meilong H, Chenguang B, Mei S, Xuewei L, Shengfu Z, Guibao Q. P r e p a r a t i o n o f s p h e r i c a l
monodispered titanium dioxide by microwave assistance. Int. J. Remote sensing App. 2012; 2(1):31-33.
[15] Wetchakun N, Incessungvorn B,Wetchakun K, Phanichphant S. I n f l u e n c e o f c a l c i n a t i o n s
temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol-gel method. Mater. Lett. 2012; 82: 195-198.
[16] Nine K, Irina S, Vladimar B, Alexander E, Sasho V. Microwaveassisted and conventional sol-gel
preparation of photocatalytically active ZnO/TiO2 /glass multilayers. Cent. Eur. J. Chem. 2013; 11(7): 1055-1065.
[17] Byranvand M.M, Kharat A.N, Fatholahi L, Beiranvand Z.M. A review on synthesis of nano-TiO2
via different methods. J. Nanostru. 2013; 3: 1-9.
[18] Boonyod S, Sutthisripok W, Sikong L. Antibacterial activity of TiO2 and Fe3+ doped TiO2 nanoparticles
synthesized at low temperature Adv. Mater. Res. 2011; 214:197-201.
[19] Sangchay W, Rattanakool T. The efficiency of photocatalytic reaction in degradation methylene blue of
TiO2 powders prepared by microwave-assisted sol-gel method.Engng. J. CMU. 2015; 22(1):18-26.
[20] Sangchay W. Photocatalytic and antibacterial activity of Ag-doped TiO2 nanoparticles. KKU Res. J. 2013; 18(5): 731-738.
[21] Muneer M.B.A, Abdul A.H.K, Abu B.M, Mohd S.T, Kamaruzzaman S. Synthesis and catalytic activity of
TiO2 nanoparticles for photochemical o x i d a t i o n o f c o n c e n t r a t e d cholorphenols nnder direct solar
radiation. Int. J. Electrochem. Sci. 2012; 7: 4871-4888.
[22] Dharani S, Shweta A, Stevin S.P, Subodh M. A maskless synthesis of TiO2-nanofiber-based hierarchical
structure for solid-state dyesensitized solar cells with improved performance. Nanoscale Res. Lett. 2014; 9(14): 1-9.