Transformation Trends of Thai Agribusiness in Agriculture 6.0 Era
Main Article Content
Abstract
This study aims to (1) analyze the transformation of the agricultural sector from Agriculture 5.0 to Agriculture 6.0, (2) analyze the business environment and development approaches for agricultural enterprises in the Agriculture 6.0 era, (3) examine trends, business opportunities, and adaptation strategies for entrepreneurs and farmers in the Agriculture 6.0 era, and (4) develop a framework for infrastructure, human resources, and policy development necessary for the transition to Agriculture 6.0. Thailand's agricultural sector has undergone continuous evolution from subsistence agriculture in the 1960s to commercial agriculture during 1980-1990, before entering Agriculture 4.0 in 2017 under the Thailand 4.0 policy that emphasized digital technology and precision agriculture. This was followed by Agriculture 5.0, which integrated automation systems and artificial intelligence, and currently advancing toward Agriculture 6.0, which combines digital technology, biotechnology, and environmental responsibility concepts. The study employs qualitative analysis methods through systematic literature review, SWOT analysis, and TOWS Matrix, along with data synthesis from relevant policy documents and strategic plans. The findings reveal that Agriculture 6.0 comprises five core practices: regenerative agriculture systems, circular economy, biological revolution, biofuel development, and carbon credit systems. Thailand possesses strengths in abundant natural resources and traditional wisdom, yet faces weaknesses in digital skills and capital access. Five major business opportunity trends were identified: the organic food market, carbon credit market potential, artificial intelligence and machine learning technology development that enhances production efficiency, expansion of export markets in the Asian region, and growth in agricultural service businesses. The study synthesizes two important new knowledge frameworks: the concept of integrated parallel value chains between traditional value chains and ecological value chains, and a three-dimensional transition driving mechanism comprising technology and innovation development mechanisms, market and financial mechanisms, and policy and institutional mechanisms. Key policy recommendations include developing digital infrastructure and accessible credit systems, improving curricula and creating technology advisory systems, fostering research and development collaboration and developing digital platforms, as well as establishing carbon credit systems and integrated natural resource management. The successful transition to Agriculture 6.0 requires collaboration from all sectors - government, private sector, educational institutions, and farmers - focusing on integrating advanced technology with local wisdom, creating balance between production and environmental conservation, and developing sustainable competitive capabilities. This will enable Thailand to capitalize on opportunities in the Agriculture 6.0 era and effectively address various challenges, leading to the elevation of Thailand's agricultural sector as a regional leader in sustainable agriculture and creating long-term food security.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Any views and comments in the Journal of Social Innovation and Lifelong Learning are the authors’ views. The editorial staff have not to agree with those views and it is not considered as the editorial’s responsibility.
2. The responsibility of content and draft check of each article belongs to each author. In case, there is any lawsuit about copyright infringement. It is considered as the authors’ sole responsibility.
3. The article copyright belonging to the authors and The Far Eastern University are copyrighted legally. Republication must be received direct permission from the authors and The Far Eastern University in written form.
References
กระทรวงเกษตรและสหกรณ์. (2560). ยุทธศาสตร์เกษตรและสหกรณ์ ระยะ 20 ปี (พ.ศ. 2560 – 2579). สำนักงานเศรษฐกิจการเกษตร. https://waa.inter.nstda.or.th/stks/pub/2017/20171121-moac-thailand-4.pdf
ชัยวัช โซวเจริญสุข. (สิงหาคม 2565). อุตสาหกรรมอาหารในอนาคต. วิจัยกรุงศรี, ธนาคารกรุงศรีอยุธยา จำกัด (มหาชน). https://www.krungsri.com/getmedia/4d8ef6f9-0203-421f-8578-3664c0dd35ca/RI_Future_Food_220830_TH.pdf.aspx
ดนุวัศ สาคริก และ ปนันดา จันทร์สุกรี. (2018). ผลกระทบของปัจจัยทางเศรษฐกิจ สังคม สถาบัน และการเปลี่ยนแปลงสภาพภูมิอากาศต่อรายได้และรายจ่ายในภาคการเกษตรของเกษตรกรไทย. วารสารรัฐประศาสนศาสตร์, 16(2), 57-85. https://gspajournal.com/wp-content/uploads/2019/01/3.-The-Impact-of-Socio-Economic-Institutional-and-Climate-Change-Factors-on-Agricultural-Income-and-Expenditure-of-Thai-Farmers.pdf
วิษณุ อรรถวานิช. (27 ธันวาคม 2565). ความสามารถในการแข่งขันของภาคเกษตรไทยตกต่ำเข้าขั้นโคม่า ! The Active. https://theactive.thaipbs.or.th/data/agriculture-competion
ศุภสิน อิทธิพัทธ์วงศ์. (มกราคม 2568). ผลกระทบจากสงครามการค้า 2.0 ต่อเศรษฐกิจไทย (Research Intelligence). วิจัยกรุงศรี, ธนาคารกรุงศรีอยุธยา. https://www.krungsri.com/getmedia/f40e39d0-5cd8-4807-ba1c-4eaf730685e1/RI_Trade_War_250120_TH.pdf.aspx
เสาวณี จันทะพงษ์ และ อโนทัย พุทธาร. (4 เมษายน 2023). การเปลี่ยนแปลงระบบห่วงโซ่อุปทานโลกหลังโควิด-19 และทำมกลางปัญหาภูมิรัฐศาสตร์: โครงสร้างการผลิตและการใช้เทคโนโลยีของไทย. คอลัมน์แจงสี่เบี้ย (ฉบับที่ 6/2023). ธนาคารแห่งประเทศไทย. https://www.bot.or.th/content/dam/bot/documents/th/research-and-publications-pdf/articles-and-publications/articles/download/2023/chaengsibia/chaengsibia-2023-no6-global-supply-chain.pdf
สำนักงานเศรษฐกิจการเกษตร. (2568). ข้อมูลเปิดภาครัฐด้านการเกษตร ปี 2567. ศูนย์ข้อมูลเกษตรแห่งชาติ สำนักงานเศรษฐกิจการเกษตร. https://oae.go.th/uploads/files/2025/07/04/358d9218afee6b6b.pdf
Adner, R., & Kapoor, R. (2016). Innovation ecosystems and the pace of substitution: Reexamining technology S-curves. Strategic Management Journal, 37(4), 625-648. https://doi.org/10.1002/smj.2363
Ahmad, L., & Nabi, F. (2021). Agriculture 5.0: Artificial intelligence, IoT and machine learning. CRC Press.
Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., & Smith, D. L. (2021). Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, 139, Article 110691. https://doi.org/10.1016/j.rser.2020.110691
Avery, M. L., Krietz, B., & Falcon, R. (2020). Foodweb 2020: Forces shaping the future of food. Institute for the Future.
Aznar-Sánchez, J. A., Velasco-Muñoz, J. F., García-Arca, D., & López-Felices, B. (2020). Identification of opportunities for applying the circular economy to intensive agriculture in Almería (South-East Spain). Agronomy, 10(10), 1499. https://doi.org/10.3390/agronomy10101499
Benbi, D. K. (2017). Nitrogen balances of intensively cultivated rice-wheat cropping systems in original green revolution states of India. In Y. P. Abrol (Ed.), The Indian nitrogen assessment (pp. 77-93). Elsevier. https://doi.org/10.1016/B978-0-12-811836-8.00006-9
Bulut, C., Nazli, M., Aydin, E., & Haque, A. U. (2021). The effect of environmental concern on conscious green consumption of post-millennials: The moderating role of greenwashing perceptions. Young Consumers, 22(2), 306-319. https://doi.org/10.1108/YC-10-2020-1241
Chopra, J., Rangarajan, V., Rathnasamy, S., & Dey, P. (2024). Life cycle assessment as a key decision tool for emerging pretreatment technologies of biomass-to-biofuel: Unveiling challenges, advances, and future potential. Bioenergy Research, 17, 857-876. https://doi.org/10.1007/s12155-024-10741-8
Chui, M., Evers, M., Manyika, J., Zheng, A., & Nisbet, T. (2023). The Bio Revolution: Innovations transforming economies, societies, and our lives. McKinsey Global Institute.
Deshpande, M. V., Kumar, N., Pillai, D., Krishna, V. V., & Jain, M. (2023). Greenhouse gas emissions from agricultural residue burning have increased by 75% since 2011 across India. Science of the Total Environment, 904, Article 166944. https://doi.org/10.1016/j.scitotenv.2023.166944
EOS Global Expansion. (2025, January 15). Japan's smart agriculture revolution: Technology adoption in rural farming. EOS Agriculture Today. https://www.eosglobalexpansion.com/japan-smart-agriculture
FAO. (2024). The state of food security and nutrition in the world 2024: Financing to end hunger, food insecurity and malnutrition in all its forms. Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/items/ebe19244-9611-443c-a2a6-25cec697b361
Feng, Y., & Rosa, L. (2024). Global biomethane and carbon dioxide removal potential through anaerobic digestion of waste biomass. Environmental Research Letters, 19(2), Article 024024. https://doi.org/10.1088/1748-9326/ad1e81
Fielding, M., & Aung, M. T. (2018). Bioeconomy in Thailand: A case study. Stockholm Environment Institute.
Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024). Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. Journal of Sensor and Actuator Networks, 13(4), Article 39. https://doi.org/10.3390/jsan13040039
Future Market Insights. (2025). Global organic food market outlook 2025-2035. Future Market Insights Ltd.
Gadanakis, Y. (2024). Advancing farm entrepreneurship and agribusiness management for sustainable agriculture. Agriculture, 14(8), 1288. https://doi.org/10.3390/agriculture14081288
Geels, F. W. (2019). Socio-technical transitions to sustainability: A review of criticisms and elaborations of the Multi-Level Perspective. Current Opinion in Environmental Sustainability, 39, 187-201. https://doi.org/10.1016/j.cosust.2019.06.009
Giller, K. E., Hijbeek, R., Andersson, J. A., & Sumberg, J. (2021). Regenerative agriculture: An agronomic perspective. Outlook on Agriculture, 50(1), 13-25. https://doi.org/10.1177/0030727021998063
Gómez-Godínez, L. J., Martínez-Romero, E., Banuelos, J., & Arteaga-Garibay, R. I. (2021). Tools and challenges to exploit microbial communities in agriculture. Current Research in Microbial Sciences, 2, Article 100062. https://doi.org/10.1016/j.crmicr.2021.100062
Goold, H. D., Wright, P., & Hailstones, D. (2018). Emerging opportunities for synthetic biology in agriculture. Genes, 9(7), Article 341. https://doi.org/10.3390/genes9070341
Green America. (2025). Regenerative agriculture: Climate solutions on the ground. Green America. https://www.greenamerica.org/climate-solutions/regenerative-agriculture
He, L., Zhou, L., Qi, J., Song, Y., & Jiang, M. (2024). The role of digital finance embedded in green agricultural development: Evidence from agribusiness enterprises in China. Land, 13(10), 1649. https://doi.org/10.3390/land13101649
Herrero, M., Thornton, P. K., Mason-D'Croz, D., Palmer, J., Bodirsky, B. L., Pradhan, P., Barrett, C. B., Benton, T. G., Hall, A., Pikaar, I., Bogard, J. R., Bonnett, G. D., Bryan, B. A., Campbell, B. M., Christensen, S., Clark, M., Fanzo, J., Godde, C. M., Jarvis, A., Loboguerrero, A. M., Mathys, A., McIntyre, C. L., Naylor, R. L., Nelson, R., Obersteiner, M., Parodi, A., Popp, A., Ricketts, K., Smith, P., Valin, H., Vermeulen, S. J., Vervoort, J., van Wijk, M., van Zanten, H. H. E., West, P. C., Wood, S. A., & Rockström, J. (2021). Articulating the effect of food systems innovation on the Sustainable Development Goals. The Lancet Planetary Health, 5(1), e50-e62. https://doi.org/10.1016/S2542-5196(20)30277-1
IMARC Group. (2024). Organic food market: Global industry trends, share, size, growth, opportunity and forecast 2024-2033. IMARC Group.
IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 184 pp., https://doi.org/10.59327/IPCC/AR6-9789291691647
Kareska, K. (2023). Innovations in modern agribusiness. https://ssrn.com/abstract=4405855
Klayson, S., & Jirakajohnkool, S. (2022). Factors related to the digital agricultural technology knowledge of young smart farmers in the central region of Thailand. Journal of Science Innovation for Sustainable Development, 4(2), 13-26. https://ph01.tci-thaijo.org/index.php/JSISD/article/view/251016
Kristoffersen, E., Mikalef, P., Blomsma, F., & Li, J. (2021). The effects of business analytics capability on circular economy implementation, resource orchestration capability, and firm performance. International Journal of Production Economics, 239, Article 108205. https://doi.org/10.1016/j.ijpe.2021.108205
Lal, R. (2020). Regenerative agriculture for food and climate. Journal of Soil and Water Conservation, 75(5), 123A-124A. https://doi.org/10.2489/jswc.2020.0620A
Li, Q., & Wang, Z. (2024). Impact of contract farming on green technological efficiency of farmers: A comparative study of two contract organizational models. Frontiers in Sustainable Food Systems, 8, Article 1368997. https://doi.org/10.3389/fsufs.2024.1368997
Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2020). From Industry 4.0 to Agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Transactions on Industrial Informatics, 17(6), 4322-4334. https://doi.org/10.1109/TII.2020.3003910
Maffezzoli, F., Ardolino, M., Bacchetti, A., Perona, M., & Renga, F. (2022). Agriculture 4.0: A systematic literature review on the paradigm, technologies and benefits. Futures, 142, Article 102998. https://doi.org/10.1016/j.futures.2022.102998
Market.us. (2024). Taiwan smart agriculture market analysis and forecast 2024-2030. Market.us Research.
MarketsandMarkets Research. (2022). China precision farming market by technology, offering, application, and region - Global forecast to 2030. MarketsandMarkets. https://www.marketsandmarkets.com/PressReleases/china-precision-farming.asp
Massruhá, S., Leite, M., Oliveira, S., Molin, J., Carvalho, P., & Maciel, D. (2020). Digital agriculture technologies for sustainable development. Embrapa Agricultural Informatics.
McKinsey & Company. (2024). Regenerative agriculture: Economic potential and implementation challenges. McKinsey Global Institute.
Meechoovet, Y., & Siriwato, S. (2023). Thailand's smart agriculture and its impacts on Thai farmers: A case study of smart agriculture in Ayutthaya, Thailand. Asian Political Science Review, 7(1), 1-17. https://doi.org/10.14456/apsr.2023.1
Mignogna, D., Ceci, P., Cafaro, C., Corazzi, G., & Avino, P. (2023). Production of biogas and biomethane as renewable energy sources: A review. Applied Sciences, 13(18), Article 10219. https://doi.org/10.3390/app131810219
Ministry of Agriculture, Forestry and Fisheries. (2024). Sustainable agriculture promotion measures in Japan. MAFF Japan.
Monteiro, A., Santos, S., & Gonçalves, P. (2021). Precision agriculture for crop and livestock farming - Brief review. Animals, 11(8), Article 2345. https://doi.org/10.3390/ani11082345
National Science and Technology Development Agency. (2021). BCG model: Fostering sustainable development in Thai economy. NSTDA. https://www.nstda.or.th/en/images/pdf/ BCG_Booklet1.pdf
Neves, M. F., Casagrande, B. P., Cambaúva, V., Teixeira, G. O., & Toledo, P. J. F. (2023). Agriculture 6.0: A new proposal for the future of agribusiness. Revista de Gestão Social e Ambiental, 17(9), 1-16. http://dx.doi.org/10.24857/rgsa.v17n9-021
Neves, M. F., et al. (2024). Sustainable agriculture transformation in developing countries. Academic Press.
One Step Beyond. (2025). Japan's agricultural technology revolution: Smart farming solutions. One Step Beyond Analytics.
Papakonstantinou, G. I., Voulgarakis, N., Terzidou, G., Fotos, L., Giamouri, E., & Papatsiros, V. G. (2024). Precision livestock farming technology: Applications and challenges of animal welfare and climate change. Agriculture, 14(4), Article 620. https://doi.org/10.3390/agriculture14040620
Pigford, A. A. E., Hickey, G. M., & Klerkx, L. (2018). Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions. Agricultural Systems, 164, 116-121. https://doi.org/10.1016/j.agsy.2018.04.007
Rosete, A. R. M. (2020). Property, access, exclusion: Agribusiness venture agreements in the Philippines. Journal of Rural Studies, 79, 65-73. https:// doi.org/10.1016/j.jrurstud.2020.08.037
Saiz-Rubio, V., & Rovira-Más, F. (2020). From smart farming towards agriculture 5.0: A review on crop data management. Agronomy, 10(2), Article 207. https:// doi.org/10.3390/agronomy 10020207
Schattman, R. E., Rowland, D. L., & Kelemen, S. C. (2023). Sustainable and regenerative agriculture: Tools to address food insecurity and climate change. Journal of Soil and Water Conservation, 78(2), 33A-38A. https://doi.org/10.2489/jswc.2023.1202A
Siwal, S. S., Zhang, Q., Devi, N., Saini, A. K., Saini, V., Pareek, B., & Thakur, V. K. (2022). Recovery processes of sustainable energy using different biomass and wastes. Renewable and Sustainable Energy Reviews, 150, Article 111483. https://doi.org/10.1016/j.rser.2021.111483
Srivetbodee, S., & Igel, B. (2021). Digital technology adoption in agriculture: Success factors, obstacles and impact on corporate social responsibility performance in Thailand's smart farming projects. Thammasat Review, 24(2), 149-170. https://doi.org/10.14456/tureview.2021.22
The Nation. (2025, January 20). Thailand's carbon credit market hits new highs in Q1 of fiscal 2025. The Nation Thailand. https://www.nationthailand.com/sustaination/40045871
United Nations Environment Programme. (2024). Promoting a sustainable agriculture and food sector in Thailand. UNEP.
United Nations Framework Convention on Climate Change. (2015). Key aspects of the Paris Agreement. UNFCCC. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
van Bussel, L. M., Kuijsten, A., Mars, M., & van 't Veer, P. (2022). Consumers' perceptions on food-related sustainability: A systematic review. Journal of Cleaner Production, 341, Article 130904. https://doi.org/10.1016/j.jclepro.2022.130904
Vargas, D. B., Pinto, T. P., & Lima, C. Z. (2023). Green transition: The bioeconomy and conversion of green into value. Observatório de Conhecimento e Inovação em Bioeconomia, Fundação Getulio Vargas. https://agro.fgv.br/sites/default/files/2023-09/eesp_relatorio_agro-bioeconimia_eng-ap1_v1%20Completo.pdf
Velasco-Muñoz, J. F., Aznar-Sánchez, J. A., Batlles-delaFuente, A., & Fidelibus, M. D. (2022). Circular economy in agriculture: A systematic literature review. Resources, Conservation and Recycling, 179, Article 106028. https://doi.org/10.1016/j.resconrec.2021.106028
Vijayakumar, S., Murugaiyan, V., Ilakkiya, S., Kumar, V., Sundaram, R. M., & Kumar, R. M. (2025). Opportunities, challenges, and interventions for agriculture 4.0 adoption. Discover Food, 5, Article 265. https://doi.org/10.1007/s44187-025-00576-3
Walter, P., & Herther, M. (2017). Nine trends transforming the agribusiness industry. L.E.K. Consulting Executive Insights, 19(62), 1-6. https://www.lek.com/sites/default/files/insights/pdf-attachments/1962_Agribusniess_Trends_LEK_Executive_Insights.pdf
Weihrich, H. (2018). The TOWS matrix—A tool for situational analysis. Long Range Planning, 15(2), 54-66. https://doi.org/10.1016/0024-6301(82)90120-0
World Bank. (2024). Food security update: World Bank response to rising food insecurity. World Bank Group. https://www.worldbank.org/en/topic/agriculture/brief/food-security-update
Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes, 7(1), Article 36. https://doi.org/10.3390/pr7010036
Zhang, H., Feng, Y., Jia, Y., Liu, P., Hou, Y., Shen, J., Zhu, Q., & Zhang, F. (2024). China's agriculture green development: From concept to actions. Frontiers of Agricultural Science and Engineering, 11(1), 20-34. https://doi.org/10.15302/J-FASE-2023512