Conversational Design as Choice Architecture for AI Chatbot Experience in Digital Marketing Communication

Main Article Content

Chutima Kessadayurat

Abstract

The competition in the online business landscape has intensified. Businesses increasingly utilize chatbots in order to enhance their service efficiency. However, communication through chatbots still has gaps, limiting their ability to persuade or close sales effectively. This research studied behavioral design strategies to improve the efficacy of chatbot interactions. By compiling keywords and phrases, the study designed chatbot response strategies using choice architecture strategies to appropriately guide product information inquiries. The results showed that choice architecture strategies improve 89.39% in purchase interest compared to standard NLP-generated responses without any optimization. The different choice architecture strategies had varying impacts on customer purchasing behavior and chatbot user experience. The strategies ranked from most to least effective in driving purchase interest were: Framing effects, Loss aversion, Nudging, Default options, and Social proof. When tested in a simulated chatbot, the responses optimized with choice architecture strategies significantly reduced the number of messages and conversational duration. However, some responses also caused user discomfort and led to conversation termination, especially when there was excessive attempt to steer the user towards the massages.

Article Details

Section
Research Articles

References

ชุติมา เกศดายุรัตน์. (2562). การสร้างคุณค่าร่วมกันและกลยุทธ์การบริหารความสัมพันธ์บนสื่อสังคมออนไลน์. BU Academic Review, 18(1), 132-147.

มาริษา เศรษฐเสรี และ ปฐมา สตะเวทิน. (2067). พฤติกรรมการเปิดรับโซเชียลมีเดียจากบิวตี้บล็อกเกอร์ที่ส่งผลต่อการตัดสินใจซื้อผลิตภัณฑ์รองพื้นของผู้บริโภคในกรุงเทพมหานคร. วารสารนักบริหาร, 44(2), 44-62.

Aslam, F. (2023). The impact of artificial intelligence on chatbot technology: A study on the current advancements and leading innovations. European Journal of Technology, 7(3), 62-72.

Brandtzaeg, P. B., & Følstad, A. (2017). Why people use chatbots. In Internet Science: 4th International Conference, INSCI 2017 (pp. 377-392). Springer International Publishing.

Dellarocas, C. (2003). The digitization of word of mouth: Promise and challenges of online feedback mechanisms. Management science, 49(10), 1407-1424.

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51-90.

Hunnes, M. G. (2016). Nudging: How human behavior is affected by design. Annual Review of Policy Design, 4(1), 1-10.

Jiang, H., Cheng, Y., Yang, J., & Gao, S. (2022). AI-powered chatbot communication with customers: Dialogic interactions, satisfaction, engagement, and customer behavior. Computers in Human Behavior, 134, 107329.

Jiao, A. (2020). An intelligent chatbot system based on entity extraction using RASA NLU and neural network. Journal of Physics Conference Series, 1487(1), 012014.

Kotler, P., & Keller, K. L. (2016). Marketing management (15th ed.). Pearson Education India.

Kohavi, R., & Longbotham, R. (2023). Online controlled experiments and A/B tests. In D. Phung, G. I. Webb, & C. Sammut (Eds.), Encyclopedia of Machine learning and Data Mining (pp.1857-1866). Springer.

Kohavi, R., Longbotham, R., Sommerfield, D., & Henne, R. M. (2009). Controlled experiments on the web: Survey and practical guide. Data Mining and Knowledge Discovery, 18(1), 140-181.

Landim, A. R. D. B., Pereira, A. M., Vieira, T., de B. Costa, E., Moura, J. A. B., Wanick, V., & Bazaki, E. (2022). Chatbot design approaches for fashion E-commerce: An interdisciplinary review. International Journal of Fashion Design, Technology and Education, 15(2), 200-210.

Leung, C. H., & Yan Chan, W. T. (2020). Retail chatbots: The challenges and opportunities of conversational commerce. Journal of Digital & Social Media Marketing, 8(1), 68-84. https://doi.org/10.69554/APSB6546

Li, X., Wu, C., & Mai, F. (2019). The effect of online reviews on product sales: A joint sentiment-topic analysis. Information & Management, 56(2), 172-184.

Patel, N., & Trivedi, S. (2020). Leveraging predictive modeling, machine learning personalization, NLP customer support, and AI chatbots to increase customer loyalty. Empirical Quests for Management Essences, 3(3), 1-24.

Thakkar, M., & Shukla, O. (2022). A Study of e-commerce companies on the behavioural economics of discounting. Indian Journal of Law and Legal Research, 4(3), 1-13.

Wendel, S. (2020). Designing for behavior change: Applying psychology and behavioral economics. O'Reilly Media, Inc.