Understanding Consumers’ Mobile Banking Adoption in Germany: An Integrated Technology Readiness and Acceptance Model (TRAM) Perspective
Main Article Content
Abstract
Today, more than a billion of the world’s population have access to mobile banking (KPMG, 2015). While people are embracing mobile banking services in their daily lives, the investigation of mobile banking from a behavioral perspective is a mystifying topic for research study. The purpose of this study is to propose and examine an integrated theoretical model to better understand consumer behavior regarding mobile banking adoption in Germany. This study integrates the multidimensional psychographic constructs of Technology Readiness Index (TRI) and the Technology Acceptance Model (TAM) with consequent consumer satisfaction and loyalty to provide a robust integrated framework of mobile banking adoption processes. Confirmatory factor analysis and structural equation modeling were employed to meticulously test the validation of constructs and their interrelationship with each other. The findings reveal that the Technology Readiness and Acceptance Model (TRAM) variables have a significant influence on adoption of mobile banking technology in Germany. The study concludes with a discussion on practical implications of the research across similar service providers, and suggests further research to improve their marketing and servicing strategies.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright: Asia-Pacific International University reserve exclusive rights to publish, reproduce and distribute the manuscript and all contents therein.
References
Anderson, E., & Sullivan, M. (1993). The Antecedents and Consequences of CustomerSatisfaction for Firms, Marketing Science, 12(2), 125-143
Anderson, E., Fornell, C., & Lehmann, R. (1994). Customer Satisfaction, Marketshare and Profitability: Findings from Sweden. Journal of Marketing, 58, 53-66.
Anderson, Eugene W.; (1996). Customer Satisfaction and Price Tolerance. Marketing Letters 7(3): 265-274. Retrieved from http://dx.doi.org/10.1007/BF00435742
Bailey, J., & Pearson, S. (1983). Development of a Tool for Measuring and Analyzing Computer User Satisfaction. Management Science, 29(5), 530-545. Retrieved from https://doi:10.1287/mnsc.29.5.530
Bagozzi, R. (1994). Measurement in Marketing Research: Basic Principles of Questionnaire Design. Principles of marketing research. 1, 1-49
Bolton, R. (1998). A Dynamic Model of the Duration of the Customer’s Relationship with a Continuous Service Provider: The Role of Satisfaction. Marketing Science, 17(1), 45-65
Callegaro, M., Manfreda, K., & Vehovar, V. (2015). Web Survey Methodology. SAGE.
Chau, P., & Hu, P. (2001). Information Technology Acceptance by Individual Professionals: A Model Comparison Approach*. Decision Sciences, 32(4), 699-719. Retrieved from https://doi:10.1111/j.15405915.2001.tb00978.x
Chin, W. (1998). Issues and Opinion on Structural Equation Modelling. Management Information Systems quarterly. 22(1), 1-8.
Clemes, D., Gan, C., Kao, T., & Choong, M. (2008 ). An Empirical Analysis of Customer Satisfaction in International Air Travel. Innovative Marketing, 4(2), 49-62.
Davis, F. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quaterly, 13(3), 319-340. Retrieved from https://doi:10.2307/249008
Devaraj, S., Fan, M., & Kohli, R. (2002). Antecedents of B2C Channel Satisfaction and Preference: Validating eCommerce Metrics. Information Systems Research, 13(3), 316-333.
DeVellis, R. (2012). Scale Development: Theory and Applications (Vol. 26). Sage publications.
Doll, W., & Torkzadeh, G. (1988). The Measurement of End-User Computing Satisfaction. MIS Quaterly, 12(2), 259-274. Retrieved from https://doi:10.2307/248851
EY. (2016). German FinTech Landscape: Opportunity for Rhein-Main-Neckar. Retrieved from http:// www.ey.com:http://www.ey.com/Publication/vwLUAssets/EY-FinTech-study-Germany/$FILE/EYFinTech-study-Germany.pdf
Fornell, C. (1992). A National Customer Satisfaction Barometer: the Swedish Experience. Journal of Marketing, 56(1), 6-21.
Fornell, C., & Larcker, D. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382-388. Retrieved from https://doi:10.2307/3150980
Fornell, C., Johnson, M., Anderson, E., & Bryant, B. (1996). The American Customer Satisfaction Index. Journal of Marketing, 60(4), 7-18.
George, D., & Mallery, M. (2003). Using SPSS for Windows Step by Step: a Simple Guide and Reference. Boston, MA: Allyn y Bacon.
George, D., & Mallery, P. (2010). SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th ed.). Boston: Pearson.
Hair, J., Anderson, R., Tatham, R., & Black, W. (1998). Multivariate Data Analysis. Prentice Hall New Jersey.
Hair, J., Black, W., Babin, B., & Anderson, R. (2010). Multivariate data analysis: a global perspective.
Hoyle, R. H. (1995). Structural Equation Modeling: Concepts, Issues, and Applications. Sage Publications.
Hughes, J. (2012). SAGE Internet Research Methods. (N. G. Fielding, R. M. Lee, & G. Blank, Eds.) Sage.
King, W., & He, J. (2006). A Meta-analysis of the Technology Acceptance Model. Information and Management, 43(6), 740-755. Retreived from https://doi:10.1016/j.im.2006.05.003
Kline, P. (2000). The Handbook of Psychological Testing. Psychology Press.
Kotler, P., & Armstrong, G. (1996). Principles of Marketing . The Prentice-Hall.
KPMG. (2015). Mobile Banking 2015. Retrieved from http://www.kpmg.com/UK: https://assets.kpmg.com/ content/dam/kpmg/pdf/2015/08/mobile-banking-report-2015.pdf
Kuo, Y., & Yen, S. (2009). Towards an Understanding of the Behavioral Intention to Use 3G Mobile Value-added Services. Computers in Human Behavior, 25(1), 103-110. Retrived from https://doi:10.1016/ j.chb.2008.07.007
Laukanen, T., Sinkkonen, S., Laukkanen, P., & Kivijarvi, M. (2008). Segmenting Bank Customers by Resistance to Mobile Banking. Interntional Journal of Mobile Communications, 6(3), 309-320. Retrieved from https://doi:10.1504/IJMC.2008.017513
Lee, Y., Park, J., Chung, N., & Blakeney, A. (2012). A Unified Perspective on The Factors Influencing Usage Intention toward Mobile Financial Services. Journal of Business Reseaech, 65(11), 1590-1599. Retrieved from https://doi:10.1016/j.jbusres.2011.02.044
Lin, C., Shih, H., Sher, P., & Wang, Y. (2005). Consumer Adoption of e-service: Integrating Technology Readiness with the Technology Acceptance Model. Technology Management: A Unifying Discipline for Melting the Boundaries. 483-488. Portland, OR, USA: IEEE. Retrieved from https://doi:10.1109/PICMET.2005.1509728
McCloskey, D. (2004). Evaluating Electronic Commerce Acceptance with the Technology Acceptance Model. Journal of Computer Information Systems, 44(2), 49-57. Retrieved from https://doi:10.1080/08874417.2004.11647566
McFarland, D., & Hamilton, D. (2006). Adding Contextual Specificity to the Technology Acceptance Model. Journal Computers in Human Behaviour, 22(3), 427-447. Retrieved from https://doi:10.1016/j.chb.2004.09.009
McGuire, B., & Crowe, M. (2008). Mobile Banking Landscape, Payments Strategy Service Forum. Burlington, Massachusetts, United States of America. Retrieved from https://www.bostonfed.org//media/Documents/cprc-presentations/mcquirecrowe100208a.pdf
McQuitty, S., Finn, A., & Wiley, J. (2000). Systematically Varying Consumer Satisfaction and Its Implications for Product Choice. Academy of Marketing Science Review, 4. Retrieved from http://citeseerx.ist.psu.edu.
Mols, N. (2000). The Internet and Services Marketing – the Case of Danish Retail Banking. Internet Research, 10(1), 7-18. Retrieved from https://doi.org/10.1108/10662240010312093
Nyer, P. (1999). Cathartic Complaining as a Means of Reducing Customer Dissatisfaction. Journal of Consumer Satisfaction, Dissatisfaction, and Complaining Behavior, 12, 15-25
Oliver, R. (1987). An Investigation of the Interrelationship betweenConsumer (dis)satisfactions And Complaining Reports. In Wallendorf, M and Anderson, P. (Eds), Advances in Consumer Research, 14, Association of Consumer Research, Provo, UT, 218-22.
Oliver, R. (1999). Whence Consumer Loyalty? Journal of Marketing, 63, 33-44.
Parasuraman, A. (2000). Technology Readiness Index (Tri). Journal of Service Research, 2(4), 307-320. Retrieved from https://doi:10.1177/109467050024001
Parasuraman, A., & Colby, C. (2001). Techno-Ready Marketing: How and Why Your Customers Adopt Technology. New York: THE FREE PRESS.
Parasuraman, A., & Grewal, D. (2000). The Impact of Technology on the Quality-Value-Loyalty Chain: A Research Agenda. Journal of the Academy of Marketing Science, 28(1), 168-174.
Parasuraman, A., Zeithaml, V., & Berry, L. (1988). SERVQUAL: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality. Journal of Retailing, 64(1), 12-40.
Rai, A., Lang, S., & Welker, B. (2002). Assessing the Validity of IS Success Models: An Empirical Testand Theoretical Analysis. Information Systems Research, 13(1), 50-69.
Russell-Bennett, R., & Rundle-Thiele, S. (2005). The Brand Loyalty Life Cycle: Implications for Marketers. Journal of Brand Management, 12(4), 250-263.
Reichheld, F. and Sasser, E. (1990) Zero Defections: Quality Comes to Services. Harvard Business Review, 68, 105-111.
Saunders, M., Lewis, P., & Thornhill, A. (2009). Research Methods for Business Students (5th ed.). Essex: Pearson Education.
Schepers, J., & Wetzels, M. (2007). A Meta-Analysis of the Technology Acceptance Model: Investigating Subjective Norm and Moderation Effects. Information & Management, 44(1), 90-103. Retrieved from https://doi:doi:10.1016/j.im.2006.10.007
Schreiber, J., Stage, F., King, J., Nora, A., & Barlow, E. (2006). Reporting Structural Equation. The Journal of Educational Research, 99(6), 323-338. Retrieved from http://dx.doi.org/10.3200/JOER.99.6.323-338
Shaikh, A., & Karjaluoto, H. (2014). Mobile Banking Adoption: A Literature Review. Telematics and Informatics, 32(1), 129-142. Retrieved from https://doi:10.1016/j.tele.2014.05.003
Sivadas, E., & Baker Prewitt, J. (2000). An Examination of the Relationship between Service Quality, Customer Satisfaction, and Store Loyalty. International Journal of Retail & Distribution Management, 28(2), 7382.
Sue, V., & Ritter, L. (2007). Conducting Online Surveys. Los Angeles: Sage Publications.
Svendsen, G., Johnsen, J., Sorensen, L., & Vitterso, J. (2013). Personality and Technology Acceptance: the Influence of Personality Factors on the Core Constructs of the Technology Acceptance Model. Behaviour & Information Technology, 32(4), 323-334. Retreived from https://doi:10.1080/0144929X.2011.553740
Tsikriktsis, N. (2004). A Technology Readiness-Based Taxonomy of Customers. Journal of Service Research, 7. Retrieved from https://doi:10.1177/1094670504266132
Venkatesh, V., & Davis, F. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204.
Walczuch, R., Lemmink, J., & Streukens, S. (2007). The Effect of Service Employees’ Technology Readiness on Technology Acceptance. Information & Management, 44(2), 206-215. Retrieved from https://doi:10.1016/j.im.2006.12.005
White, T., & McBurney, D. (2012 ). Research Methods (9th ed.). Cengage Learning.
Yamane, Taro (1973). Statistics: An Introductory Analysis. New York: Harper & Row.
Zhang, J., & Mao, E. (2008). Understanding the Acceptance of Mobile SMS Advertising among Young Chinese Consumers. Pshychology and Marketing, 25(8), 787-805. Retrieved from https://doi:10.1002/ mar.20239