Factors Influencing on Acceptance of Telehealth Service After Covid-19 Situation

Main Article Content

Saranchana Kaewbuadee
Asst.Prof.Dr.Tanpat Kraiwanit

Abstract

This research aims to examine factors in digital technology acceptance that affect decision-making for using telehealth services, decision-making models for using services, and the influence of factors in digital technology acceptance on telehealth service decision-making. The research included 400 Thai citizens aged 18 and above as participants. The research tool was to collect data by using online questionnaires. Which are divided into four parts: 1) demographic characteristics, 2) behavior of using telehealth services, 3) adoption of digital technology that affects to use telehealth services, and 4) service decision-making. The responses of 428 questionnaires were received and the remaining 400 samples were screened for accuracy. A questionnaire was used to describe by mean scores, standard deviation, Pearson's product- moment correlation coefficients, and stepwise multiple regression analysis were used to analyze the data.


      The findings revealed that four factors in digital technology acceptance (usefulness, ease of use, safety, and the reliability of service providers) had a high-level mean. According to an analysis of the influence of factors in digital technology acceptance that affect the decision-making for using telehealth services, factors like usefulness, safety, and service providers' reliability all influence the decision-making for using telehealth services at a significant level of 0.05 with an r-square of 0.224. When controlling for confounding factors, a one-point increase in the usefulness score led to a 0.237-point increase in decision-making, a one-point increase in the safety score resulted in a 0.167-point increase in decision-making, and an increase of one point in the reliability of service providers resulted in a 0.164-point increase in decision-making.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kaewbuadee, S., & Kraiwanit, T. (2022). Factors Influencing on Acceptance of Telehealth Service After Covid-19 Situation. Faculty of Humanities and Social Sciences Thepsatri Rajabhat University Jounal, 13(2), 37–54. Retrieved from https://so01.tci-thaijo.org/index.php/truhusocjo/article/view/252400
Section
Research Article

References

กรมควบคุมโรค. (2564). สถานการณ์ผู้ติดเชื้อ COVID-19 อัพเดทรายวัน. สืบค้น กันยายน 25, 2564 จาก https://ddc.moph.go.th/covid19-dashboard/.

ฉัตยาพร เสมอใจ. (2550). พฤติกรรมผู้บริโภค. กรุงเทพฯ: บริษัท ซีเอ็ดยูเคชั่น จำกัด.

ธีรภัทร อดุลยธรรม. (2563). Cloud Meeting-Telemedicine กับ บุคลากรทางการแพทย์ในยุคโควิด-19. Journal of The Department of Medical Services, 45(2), 5 - 7.

ยุทธ ไกยวรรณ์. (2550). การวิจัยเพื่อการบริหารงานอุตสาหกรรม. กรุงเทพ: ศูนย์ส่งเสริมสื่อกรุงเทพ.

สิงหะ ฉวีสุข, และสุนันทา วงศ์จตุรภัทร. (2555). ทฤษฎีการยอมรับการใช้เทคโนโลยีสารสนเทศ. วารสารเทคโนโลยีสารสนเทศลาดกระบัง, 1(1), 1-21.

สำนักงานสถิติแห่งชาติ. (2563). จำนวนประชากรจากการทะเบียน จำแนกตามอายุ เพศ และจังหวัด พ.ศ. 2563. สืบค้น กันยายน 15, 2564 จาก http://statbbi.nso.go.th/staticreport/page/sector/th/01.aspx.

ศิริรัตน์ วงศ์ประกรณ์กุล. (2563). ยุคใหม่ของการดูแลสุขภาพด้วยระบบนิเวศทางธุรกิจและเทเลเฮลธ์. วารสาร Mahidol R2R e-Journal, 7(2), 1 - 15.

Bhattacherjee, A., & Hikmet, N. (2007). Physicians’ Resistance Toward Healthcare in- Formation Technology: A Theoretical Model and Empirical Test. European Journal of Information Systems, 16(6), 725 – 737.

Boot, W.R., Best, R., Charness, N., Kort, H.S.M., van Houwelingen, C.T.M., & Barakat, A. (2015, November). Exploring Factors Influencing US Nurses' Willingness to Use Telehealth Technology. The Gerontologist, 55(suppl.2), 767.

Bull, T.P., Dewar, A.R., Malvey, D.M., & Szalma, J.L. (2016, July - December). Considerations For The Telehealth Systems of Tomorrow: An Analysis of Student Perceptions of Telehealth Technologies. JMIR Medical Education, 2(2), e11, 1 - 12.

Chatzoglou, P.D., Sarigiannidis, L., Vraimaki, E., & Diamantidis, A. (2009, November). Investigating Greek Employees’ Intention to Use Web-based Training. Computers & Education, 53(3), 877 – 889.

Cimperman, M., Brenčič, M. M., & Trkman, P. (2016, June). Analyzing Older Users’ Home Telehealth Services Acceptance Behavior – Applying an Extended UTAUT Model. International Journal of Medical Informatics, 90, 22 - 31.

Demiris, G., Speedie, S.M., & Finkelstein, S. (2001, September). Change of Patients' Perceptions of Tele Home Care. Telemedicine Journal and e-Health, 7(3), 241 – 248.

Hall, A.K., Dodd, V., Harris, A., McArthur, K., & Dacso, C. (2014, April). Colton LM. Heart Failure Patients’ Perceptions and Use of Technology to Manage Disease Symptoms. Telemedicine and e-Health, 20(4), 324 – 331.

Haque, S. N., Banger, A., DeStephano, S., Rutledge, R., & Romaire, M. (2019). Factors Influencing Telehealth Adoption in Critical Access Hospitals: Insights from a Demonstration. In AMIA, RTI International, Research Triangle Park, NC.

Mckinsey. (2020). Telehealth Has Surged Under COVID-19. Retrieved September 25, 2021, from https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/telehealth-a-quarter-trillion-dollar-post-covid-19-reality.

Rahimpour, M., Lovell, N.H., Celler, B.G., & McCormick, J. (2008, July). Patients' Perceptions of a Home Telecare System. International Journal of Medical Informatics, 77(7), 486–498.

Sarlan, A., Ahmad, R., Ahmad, W. F. W., & Dominic, P. D. D. (2012, June). Users' Behavioral Intention to Use Clinic Information System: A Survey. In 2012 International Conference on Computer & Information Science (ICCIS) (Vol. 1, pp. 37-43). IEEE.

Seto, E., Leonard, K.J., Masino, C., Cafazzo, J.A., Barnsley, J., & Ross, H.J. (2010, October - December). Attitudes of Heart Failure Patients and Health care Providers towards Mobile Phone-Based Remote Monitoring. Journal of Medical Internet Research, 12(4), 56 – 65.

Taylor, J., Coates, E., Brewster, L., Mountain, G., Wessels, B., & Hawley, M. S. (2015). Examining The Use of Telehealth in Community Nursing: Identifying The Factors Affecting Frontline Staff Acceptance and Telehealth Adoption. Journal of advanced nursing, 71(2), 326 - 337.

Tsai, C. H. (2014). Integrating Social Capital Theory, Social Cognitive Theory, and The Technology Acceptance Model to Explore a Behavioral Model of Telehealth Systems. International Journal of Environmental Research and Public Health, 11(5), 4905 - 4925.

Tsai, J.-M., Cheng, M.-J., Tsai, H.-H., Hung, S.-W., & Chen, Y.-L. (2019, December). Acceptance and Resistance of Telehealth: The Perspective of Dual-Factor Concepts in Technology Adoption. International Journal of Information Management, 49, 34 - 44.

Venkatesh, V., Morris, M.G., Davis, G.B., & Davis, F.D. (2003, September). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425 - 478.

Woo, K., & Dowding, D.W. (2020, April). Decision-Making Factors Associated With Telehealth Adoption By Patients With Heart Failure at Home: A Qualitative Study. CIN: Computers, Informatics, Nursing, 38(4), 204 - 214.

Yamane, T. (1967). Statistics: An Introductory Analysis. New York: Harper and Row.