TREND OF SELECTION FOR STUDY PLANNING USING MACHINE LEARNING BY COMPARING THE RESULTS BETWEEN ARTIFICIAL NEURAL NETWORK AND SUPPORT VECTOR MACHINE
Keywords:
Machine Learning, Artificial Neural Network, Support Vector MachineAbstract
This research is to finding trends for decision in the selection of high school study plans between sciences and mathematics plan and arts plan by using machine learning to help analyze data using Supervised Learning by comparing 2 techniques; Artificial Neural Network and Support Vector Machine with a total of 908 sample data sets. The objectives of research were 1) to create a model of trends analyze for decision to select high school study plans between sciences and mathematics plan and arts plan 2) to compare the performance of the selection of high school study plans model by Artificial Neural Network and Support Vector Machine techniques. It was found that when the data were used to find the percentage of accuracy by dividing of the training set; the training set was 80 percent and the testing set was 20 percent. The accuracy analyzing was as follows: 1)Artificial Neural Network 80 percent 2)Support Vector Machine 85 percent.
References
นนท์ บุญนิธิประเสริฐ และ ชัยพร เขมะภาตะพันธ์. (2552). การกรองข้อความภาษาไทยและภาษาอังกฤษของบริการส่งข้อความสั้นบนเครือข่ายโทรศัพท์เคลื่อนที่. Proceeding of The 7th National. Conference on Computing and Information Technology (NCCIT2009), Bangkok, หน้า 34-39.
โรงเรียนสาธิต “พิบูลบำเพ็ญ” มหาวิทยาลัยบูรพา. (2566). หลักสูตรของโรงเรียน. เข้าถึงได้จาก
http://www.st.buu.ac.th/html/index.php/th/abouts-th/course
Adcock, J.C. Allen, E. Day, M. Frick, S. Hinchliff, J. Johnson, M. Morley-Short, S. Pallister, S. Price, A.B. & Stanisic, S. (2015). Advances in quantum machine learning. Retrieved from
https://www.researchgate.net/publication/286513346
Aly, W. M., Hegazy. O. F., & Rashad, H. M. N. (2013). Automated student advisory using Machine Learning. International Journal of Computer Applications, 8(19), p.p 19-24.
Chapman, P. Clinton, J. Kerber, R. Khabaza, T. Reinartz, T. Shearer, C. and Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guide. SPSS Inc.
Drake, Guido Van Rossum Fred L. (2003). An introduction to Python. Network Theory Limited.
Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow. CA. O'Reilly Media.
Han, J. and Kamber, M. (2001). Data mining concepts and techniques. The Morgan Kaufmann Publishers.
Jaroenpuntaruk, V. Wichadakul, D. (2015). Utilizing data mining techniques to forecast student academic achievement of Kasetsart University Laboratory School Kamphaeng Saen Campus Educational Research and Development Center. Veridian E-J Sci Technol Silpakorn Univ. 2(2), pp. 1–17.
Joyce, J. (2003). Bayes’ theorem. Retrieved from https://plato.stanford.edu/archives/spr2019/entries/bayes-theorem/
Mitchell, T.M. (1997). Machine learning. McGraw-hill.
Pedregosa, F. Varoquaux, G. Gramfort, A. Michel, V. Thirion, B. Grisel, O. Blondel, M. Prettenhofer, P. Weiss, R. Dubourg, V. Vanderplas, J. Passos, A. Cournapeau, D. Brucher, M. Perrot, M. & Duchesnay, É. Scikit-learn. (2011). Machine learning in Python. Journal of Machine Learning Research. 12(85), p.p. 28252830.
Pupale, R. (2018). Support Vector Machines (SVM) – An Overview. Retrieved from https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989
Witten, I. H. and Frank, E. (2005). Data mining: Practical machine learning tools and techniques. The Morgan Kaufmann Publishers.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Department of International Graduate Studies in Human Resource Development, Faculty of Education, Burapha University
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright@HRD Journal, Burapha University