A Guideline for urban geometry with tree planting and effect on ventilation and reduce air pollution concentration of urban street canyon in Bangkok
Main Article Content
Abstract
Particulate matter (PM) or PM 2.5 is generated by traffic in urban areas and effects on pedestrian health. Increasing natural ventilation and planting trees on streets will reduce air pollution in urban areas. But ventilation in urban areas is difficult because the airflow is blocked by buildings. Urban geometry indicated Urban density and study on urban street canyon. This paper aim focuses on urban geometry guidelines with tree planting and effect on airflow and reduce PM2.5 concentration in urban street canyon. The simulation studies run with Envi-met software for 2 models of urban street canyon in Bangkok metropolitan with the same orientation for the ambient wind direction perpendicular to the street canyon and arrangement of tree in this area. The results reveal that the H/W ratio and not related to wind speed. If the windward buildings are higher than the leeward buildings, it contributes to increases wind speed and reduces PM2.5 concentration in street canyon area. The study also reveals that planting tall trees with low density leave index along the street with 15 meters interval would benefit with wind speed under the tree does not decrease. Arrangement of tree in double-rows and center of the street reduce PM2.5 concentration equally.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Balczó, M. G. R., Bodo. (2009). Numerical modeling of flow and pollutant dispersion in street canyons with tree planting. Meteorologische Zeitschrift, 18(2), 197-206. https://doi.org/10.1127/0941-2948/2009/0361
Bruse, M. (2013). ENVI-met. http://www.model.envi-met.com
Chatzidimitriou, A., & Yannas, S. (2017). Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustainable Cities and Society, 33, 85-101. https://doi.org/10.1016/j.scs.2017.05.019
Deshmukh, P., Isakov, V., Venkatram, A., Yang, B., Zhang, K. M., Logan, R., & Baldauf, R. (2019). The effects of roadside vegetation characteristics on local, near-road air quality. Air Quality, Atmosphere & Health, 12(3), 259-270. https://doi.org/10.1007/s11869-018-0651-8
Ehrnsperger, L., & Klemm, O. (2022). Air pollution in an urban street canyon: Novel insights from highly resolved traffic information and meteorology. Atmospheric Environment: X, 13. https://doi.org/10.1016/j.aeaoa.2022.100151
Fellini, S., Marro, M., Del Ponte, A. V., Barulli, M., Soulhac, L., Ridolfi, L., & Salizzoni, P. (2022). High resolution wind-tunnel investigation about the effect of street trees on pollutant concentration and street canyon ventilation. Building and Environment, 226. https://doi.org/10.1016/j.buildenv.2022.109763
Gromke, C., & Ruck, B. (2007). Influence of trees on the dispersion of pollutants in an urban street canyon—Experimental investigation of the flow and concentration field. Atmospheric Environment, 41(16), 3287-3302. https://doi.org/http://dx.doi.org/10.1016/j.atmosenv.2006.12.043
Gromke, C., & Ruck, B. (2009). On the Impact of Trees on Dispersion Processes of Traffic Emissions in Street Canyons. Boundary-Layer Meteorology, 131(1), 19-34. https://doi.org/10.1007/s10546-008-9301-2
Jin, S., Guo, J., Wheeler, S., Kan, L., & Che, S. (2014). Evaluation of impacts of trees on PM2.5 dispersion in urban streets. Atmospheric Environment, 99, 277-287. https://doi.org/https://doi.org/10.1016/j.atmosenv.2014.10.002
Kai, r., & Joachim, E. (2001). Simulation of effects of vegetation on the dispersion of pollutants in street canyons. Meteorologische Zeitschrift, 10(4), 229-233. https://doi.org/10.1127/0941-2948/2001/0010-0229
Kleeman, M. J., Schauer, J. J., & Cass, G. R. (2000). Size and Composition Distribution of Fine Particulate Matter Emitted from Motor Vehicles. Environmental Science & Technology, 34(7), 1132-1142. https://doi.org/10.1021/es981276y
Kubota, T., Miura, M., Tominaga, Y., & Mochida, A. (2008). Wind tunnel tests on the relationship between building density and pedestrian-level wind velocity: Development of guidelines for realizing acceptable wind environment in residential neighborhoods. Building and Environment, 43(10), 1699-1708. https://doi.org/https://doi.org/10.1016/j.buildenv.2007.10.015
Kulmala, M. (2015). Atmospheric chemistry: China’s choking cocktail. Nature, 526(7574), 497-499. https://doi.org/10.1038/526497a
Lalic, B., & Mihailovic, D. (2004). An Empirical Relation Describing Leaf-Area Density inside the Forest for Environmental Modeling. Journal of Applied Meteorology - J APPL METEOROL, 43, 641-645. https://doi.org/10.1175/1520-0450(2004)043
Li, Z., Zhang, H., Wen, C.-Y., Yang, A.-S., & Juan, Y.-H. (2020). Effects of height-asymmetric street canyon configurations on outdoor air temperature and air quality. Building and Environment, 183. https://doi.org/10.1016/j.buildenv.2020.107195
Miao, C., Li, P., Yu, S., Chen, W., & He, X. (2022). Does street canyon morphology shape particulate matter reduction capacity by street trees in real urban environments? Urban Forestry & Urban Greening, 78. https://doi.org/10.1016/j.ufug.2022.127762
Morakinyo, T. E., Kong, L., Lau, K. K.-L., Yuan, C., & Ng, E. (2017). A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal comfort. Building and Environment, 115, 1-17. https://doi.org/10.1016/j.buildenv.2017.01.005
Morakinyo, T. E., & Lam, Y. F. (2016a). Simulation study of dispersion and removal of particulate matter from traffic by road-side vegetation barrier. Environmental Science and Pollution Research, 23(7), 6709-6722. https://doi.org/10.1007/s11356-015-5839-y
Morakinyo, T. E., & Lam, Y. F. (2016b). Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon's micro-climate and thermal comfort. Building and Environment, 103, 262-275. https://doi.org/http://dx.doi.org/10.1016/j.buildenv.2016.04.025
Nakata-Osaki, C. M., Souza, L. C. L., & Rodrigues, D. S. (2018). THIS – Tool for Heat Island Simulation: A GIS extension model to calculate urban heat island intensity based on urban geometry. Computers, Environment and Urban Systems, 67, 157-168. https://doi.org/10.1016/j.compenvurbsys.2017.09.007
Nazridoust, K., & Ahmadi, G. (2006). Airflow and pollutant transport in street canyons. Journal of Wind Engineering and Industrial Aerodynamics, 94(6), 491-522. https://doi.org/10.1016/j.jweia.2006.01.012
Oke, T. R. (1987). Boundary Layer Climate. Routledge.
Salizzoni, P., Soulhac, L., & Mejean, P. (2009). Street canyon ventilation and atmospheric turbulence. Atmospheric Environment, 43(32), 5056-5067. https://doi.org/10.1016/j.atmosenv.2009.06.045
Samsonov, T. E., Konstantinov, P. I., & Varentsov, M. I. (2015). Object-oriented approach to urban canyon analysis and its applications in meteorological modeling. Urban Climate, 13, 122-139. https://doi.org/http://dx.doi.org/10.1016/j.uclim.2015.07.007
Thaiutsa, B., Puangchit, L., Kjelgren, R., & Arunpraparut, W. (2008). Urban green space, street tree and heritage large tree assessment in Bangkok, Thailand. Urban Forestry & Urban Greening, 7(3), 219-229. https://doi.org/https://doi.org/10.1016/j.ufug.2008.03.002
Wang, X., Teng, M., Huang, C., Zhou, Z., Chen, X., & Xiang, Y. (2020). Canopy density effects on particulate matter attenuation coefficients in street canyons during summer in the Wuhan metropolitan area. Atmospheric Environment, 240, 117739. https://doi.org/https://doi.org/10.1016/j.atmosenv.2020.117739
Wang, X., Yang, X., Wang, X., Zhao, J., Hu, S., & Lu, J. (2020). Effect of reversible lanes on the concentration field of road-traffic-generated fine particulate matter (PM2.5). Sustainable Cities and Society, 62. https://doi.org/10.1016/j.scs.2020.102389
Wong, N. H., & Jusuf, S. K. (2013). Urban Heat Island and Mitigation Strategies at City and Building Level. Advances in the Development of Cool Materials for the Built Environment, 3-32(3).
Yang, J., Shi, B., Shi, Y., Marvin, S., Zheng, Y., & Xia, G. (2020). Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustainable Cities and Society, 54. https://doi.org/10.1016/j.scs.2019.101941
พิชามญชุ์ ลี่ทองอิน, ดารณี จารีมิตร, และ มานัส ศรีวณิช. (2560). การปรับเทียบและการตรวจสอบความถูกต้องของการสร้างแบบจําลอง ภูมิอากาศจุลภาคภายนอกอาคารใน ENVI-met V4 กับการตรวจวัด ภาคสนาม: การศึกษาทดลองพื้นที่เขตพักอาศัยประเภทบ้านเดี่ยว. Built Environment Research Associates Conference 2017, 8, 78-85.
เอื้อมพร วีสมหมาย, ศศิยา ศิริพานิช, อลิศรา มีนะกนิษฐ และ ณัฏฐ พิชกรรม. (2551). พรรณไม้ในงานภูมิสถาปัตยกรรม 1.
(พิมพ์ครั้งที่ 3). ม.ป.ท.