THE IMPACT OF ARTIFICIAL INTELLIGENCE ON DUAL INNOVATION AMONG EMPLOYEES
Main Article Content
Abstract
This study aims to explore how the usage of Artificial Intelligence (AI) affects employees’ exploitative and exploratory innovations, and further analyze the mediating role of positive emotions in this process. Based on the cognitive appraisal theory and the feelings-as-information theory, the study proposes that AI usage can enhance employees’ work efficiency, leading to positive evaluations and promoting positive emotions. However, these emotions may result in employees’ dependency on AI, which could hinder the development of dual innovation. Through a questionnaire survey and empirical analysis of employees in enterprises, the results indicate that the use of AI technology has a significant positive impact on both exploitative and exploratory innovations. However, while the negative impact of positive emotions on exploitative innovation is not significant, it has a significant negative impact on exploratory innovation. The study suggests that AI technology contributes to the enhancement of employees’ dual innovation capabilities, but the positive emotions it induces may reduce employees’ willingness to explore. Therefore, enterprises should optimize AI empowerment mechanisms and strengthen employees’ motivation for exploratory innovation to fully leverage AI’s potential in promoting dual innovation. This study extends the application of the cognitive appraisal theory to the domain of innovation and provides empirical evidence for the context-dependent and adaptive functions of emotions within the framework of the feelings-as-information theory. It challenges the conventional view that positive emotions always produce favorable outcomes and lays a theoretical foundation for future exploration of the multifaceted roles of emotions.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Chinese Journal of Social Science and Management Editorial Division
The Office of Research and Development, Panyapiwat Institute of Management
85/1 Moo 2, Chaengwattana Rd., Bang Talat, Pakkred, Nonthaburi 11120, Thailand
Tel. 02 855 01048 E-mail: cjssm@pim.ac.th
References
Boemelburg, R., Berger, S., Jansen, J. J. P., & Bruch, H. (2023). Regulatory focus climate, organizational structure, and employee ambidexterity: An interactive multilevel model. Human Resource Management, 62(5), 701-719. https://doi.org/10.1002/hrm.22155
Borges, A. F. S., Laurindo, F. J. B., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021). The strategic use of Artificial Intelligence in the digital era: Systematic literature review and future research directions. International Journal of Information Management, 57, 102225. https://doi.org/10.1016/j.ijinfomgt.2020.102225
Burton, J. W., Lopez-Lopez, E., Hechtlinger, S., Rahwan, Z., Aeschbach, S., Bakker, M. A., Becker, J. A., Berditchevskaia, A., Berger, J., Brinkmann, L., Flek, L., Herzog, S. M., Huang, S., Kapoor, S., Narayanan, A., Nussberger, A. -M., Yasseri, T., Nickl, P., Almaatouq, A., . . . Hertwig, R. (2024). How large language models can reshape collective intelligence. Nature Human Behaviour, 8(9), 1643-1655. https://doi.org/10.1038/s41562-024-01959-9
Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How Artificial Intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24-42. https://doi.org/10.1007/s11747-019-00696-0
Einola, K., & Khoreva, V. (2023). Best friend or broken tool? Exploring the co‐existence of humans and Artificial Intelligence in the workplace ecosystem. Human Resource Management, 62(1), 117-135. https://doi.org/10.1002/hrm.22147
Eshraghian, F., Hafezieh, N., Farivar, F., & De Cesare, S. (2025). AI in software programming: Understanding emotional responses to GitHub Copilot. Information Technology & People, 38(4), 1659-1685. https://doi.org/10.1108/ITP-01-2023-0084
Forgas, J. P., & George, J. M. (2001). Affective influences on judgments and behavior in organizations: An information processing perspective. Organizational Behavior and Human Decision Processes, 86(1), 3-34. https://doi.org/10.1006/obhd.2001.2971
Fügener, A., Grahl, J., Gupta, A., & Ketter, W. (2021). Will humans-in-the-loop become borgs? Merits and pitfalls of working with AI. MIS Quarterly, 45(3), 1527-1556. https://doi.org/10.25300/MISQ/2021/16553
Frijda, N. H. (1993). The place of appraisal in emotion. Cognition and Emotion, 7(3-4), 357-387. https://doi.org/10.1080/02699939308409193
Halinski, M., Boekhorst, J. A., Allen, D., & Good, J. R. L. (2025). Creativity during threat to organizational survival: The influence of employee creativity on downsizing survival selection. Journal of Management, 51(3), 1033-1065. https://doi.org/10.1177/01492063231216691
Isbell, L. M., Lair, E. C., & Rovenpor, D. R. (2013). Affect‐as‐information about processing styles: A cognitive malleability approach. Social and Personality Psychology Compass, 7(2), 93-114. https://doi.org/10.1111/spc3.12010
Jia, N., Luo, X., Fang, Z., & Liao, C. (2024). When and how Artificial Intelligence augments employee creativity. Academy of Management Journal, 67(1), 5-32. https://doi.org/10.5465/amj.2022.0426
Johnson, M. K. (2020). Joy: A review of the literature and suggestions for future directions. The Journal of Positive Psychology, 15(1), 5-24. https://doi.org/10.1080/17439760.2019.1685581
Kanbach, D. K., Heiduk, L., Blueher, G., Schreiter, M., & Lahmann, A. (2024). The GenAI is out of the bottle: Generative Artificial Intelligence from a business model innovation perspective. Review of Managerial Science, 18(4), 1189-1220. https://doi.org/10.1007/s11846-023-00696-z
King, P. E. (2020). Joy distinguished: Teleological perspectives on joy as a virtue. The Journal of Positive Psychology, 15(1), 33-39. https://doi.org/10.1080/17439760.2019.1685578
Koryak, O., Lockett, A., Hayton, J., Nicolaou, N., & Mole, K. (2018). Disentangling the antecedents of ambidexterity: Exploration and exploitation. Research Policy, 47(2), 413-427. https://doi.org/10.1016/j.respol.2017.12.003
Lazarus, R. S. (1991). Progress on a cognitive-motivational-relational theory of emotion. American Psychologist, 46(8), 819-834.
Lebovitz, S., Levina, N., & Lifshitz-Assaf, H. (2021). Is AI ground truth really true? The dangers of training and evaluating AI tools based on experts’ know-what. MIS Quarterly, 45(3b), 1501-1526. https://doi.org/10.25300/MISQ/2021/16564
Lee, B. C., & Chung, J. (2024). An empirical investigation of the impact of ChatGPT on creativity. Nature Human Behaviour, 8, 1906-1914. https://doi.org/10.1038/s41562-024-01953-1
Luo, X., Qin, M. S., Fang, Z., & Qu, Z. (2021). Artificial Intelligence coaches for sales agents: Caveats and solutions. Journal of Marketing, 85(2), 14-32. https://doi.org/10.1177/0022242920956676
Mom, T. J. M., Chang, Y. -Y., Cholakova, M., & Jansen, J. J. P. (2019). A multilevel integrated framework of firm HR practices, individual ambidexterity, and organizational ambidexterity. Journal of Management, 45(7), 3009-3034. https://doi.org/10.1177/0149206318776775
Mom, T. J. M., Van Den Bosch, F. A. J., & Volberda, H. W. (2009). Understanding variation in managers’ ambidexterity: Investigating direct and interaction effects of formal structural and personal coordination mechanisms. Organization Science, 20(4), 812-828. https://doi.org/10.1287/orsc.1090.0427
Noy, S., & Zhang, W. (2023). Experimental evidence on the productivity effects of generative Artificial Intelligence. Science, 381(6654), 187-192. https://doi.org/10.1126/science.adh2586
Ocal, A., & Crowston, K. (2024). Framing and feelings on social media: The futures of work and intelligent machines. Information Technology & People, 37(7), 2462-2488. https://doi.org/10.1108/ITP-01-2023-0049
Schwarz, N. (2012). Feelings-as-information theory. In P. A. Van Lange, A. W. Kruglanski, & E. T. Higgins (Eds.), Handbook of theories of social psychology: Volume 1 (pp. 289-308). SAGE Publications Ltd. https://doi.org/10.4135/9781446249215.n15
Shao, Y., Huang, C., Song, Y., Wang, M., Song, Y. H., & Shao, R. (2024). Using augmentation-based AI tool at work: A daily investigation of learning-based benefit and challenge. Journal of Management, 51(8), 3352-3390. https://doi.org/10.1177/01492063241266503
Smith, C. A., & Lazarus, R. S. (1993). Appraisal components, core relational themes, and the emotions. Cognition and Emotion, 7(3-4), 233-269. https://doi.org/10.1080/02699939308409189
So, J., Achar, C., Han, D., Agrawal, N., Duhachek, A., & Maheswaran, D. (2015). The psychology of appraisal: Specific emotions and decision‐making. Journal of Consumer Psychology, 25(3), 359-371. https://doi.org/10.1016/j.jcps.2015.04.003
Sun, J., Wayne, S. J., & Liu, Y. (2022). The roller coaster of leader affect: An investigation of observed leader affect variability and engagement. Journal of Management, 48(5), 1188-1213. https://doi.org/10.1177/01492063211008974
Tan, C. S., & Titova, L. (2024). Enjoying the moment of joy: Culture and self during emotional experience. The Journal of Positive Psychology, 20(3), 1-12. https://doi.org/10.1080/17439760.2024.2387338
Tang, P. M., Koopman, J., Mai, K. M., De Cremer, D., Zhang, J. H., Reynders, P., Ng, C. T. S., & Chen, I. -H. (2023). No person is an island: Unpacking the work and after-work consequences of interacting with Artificial Intelligence. Journal of Applied Psychology, 108(11), 1766-1789. https://doi.org/10.1037/apl0001103
Tang, P. M., Koopman, J., McClean, S. T., Zhang, J. H., Li, C. H., De Cremer, D., Lu, Y., & Ng, C. T. S. (2022). When conscientious employees meet intelligent machines: An integrative approach inspired by complementarity theory and role theory. Academy of Management Journal, 65(3), 1019-1054. https://doi.org/10.5465/amj.2020.1516
Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53-55. https://doi.org/10.5116/ijme.4dfb.8dfd
Te’eni, D., Yahav, I., Zagalsky, A., Schwartz, D., Silverman, G., Cohen, D., Mann, Y., & Lewinsky, D. (2023). Reciprocal human-machine learning: A theory and an instantiation for the case of message classification. Management Science, 2023, 1-26. https://doi.org/10.1287/mnsc.2022.03518
Verma, S., & Singh, V. (2022). Impact of Artificial Intelligence-enabled job characteristics and perceived substitution crisis on innovative work behavior of employees from high-tech firms. Computers in Human Behavior, 131, 107215. https://doi.org/10.1016/j.chb.2022.107215
Watson, D., & Clark, L. A. (1994). Construction of the joviality, self-assurance, attentiveness, and serenity scales. In D. Watson & L. A. Clark (Eds.), The PANAS-X: Manual for the positive and negative affect schedule-expanded form (pp. 11-12). The University of Iowa.