Developing Artificial Intelligence Literacy Through the Think-Pair-Share Technique with Chatgpt
Keywords:
Artificial Intelligence Literacy, Think-Pair-Share technique, ChatGPTAbstract
This study examined the effect of using the think-pair-share strategy with ChatGPT as a cognitive partner to enhance students' artificial intelligence literacy. The sample consisted of 30 undergraduate students who participated in a learning activity where ChatGPT functioned as a thinking partner to promote analytical thinking. The research instrument was a pre- and post-intervention AI literacy assessment that encompassed four key dimensions of artificial intelligence literacy: awareness, usage, evaluation, and ethics. The assessment employed a five-point rating scale and was validated for content validity and internal consistency, with a Cronbach's alpha coefficient of 0.86 to ensure reliability. Self-assessment scores were analyzed using descriptive statistics to calculate means and standard deviations. A paired-sample t-test was employed to compare scores before and after the intervention.
The findings revealed that after participating in the think-pair-share activity with ChatGPT, students' mean AI literacy scores increased significantly from 2.66 to 4.33 (p < 0.05). Furthermore, when analyzing each individual dimension, significant improvements were observed in all four dimensions (p < 0.05). These results indicate that using ChatGPT
as a cognitive partner effectively enhanced the AI literacy of undergraduate students.
References
Aeri, L. (2021). The effect of artificial intelligence literacy education on university students ethical consciousness of artificial intelligence. Robotics & AI Ethics, 6(3), 52-61. https://doi.org/10.22471/ai.2021.6.3.52
Alsmadi, M. A., Tabieh, A. A., Alsaifi, R. M., & Al-Nawaiseh, S. J. (2023). The effect of the collaborative discussion strategy think-pair-share on developing students' skills in solving engineering mathematical problems. European Journal of Educational Research, 12(2), 1123-1135. https://doi.org/10.12973/eu-jer.12.2.1123
Bearman, M., & Ajjawi, R. (2023). Learning to work with the black box: Pedagogy for a world with artificial intelligence. British Journal of Educational Technology, 54(5), 1160-1173. https://doi.org/10.1111/bjet.13337
Bećirović, S., Polz, E., & Tinkel, I. (2025). Exploring students’ AI literacy and its effects on their AI output quality, self-efficacy and academic performance. Smart Learning Environments, 12(1), 1-25. https://doi.org/10.1186/s40561-025-00384-3
Bewersdorff, A., Hornberger, M., Nerdel, C., & Schiff, D. S. (2025). AI advocates and cautious critics: How AI attitudes, AI interest, use of AI, and AI literacy build university students' AI self-efficacy. Computers and Education: Artificial Intelligence, 8, Article 100340. https://doi.org/10.1016/j.caeai.2024.100340
Dhamija, A., & Dhamija, D. (2025). Understanding Teachers' Perspectives on ChatGPT-Generated Assignments in Higher Education. Journal of Interdisciplinary Studies in Education, 14(1), 38-62. https://doi.org/10.32674/ptf9yd75
Firat, M. (2023). How chat GPT can transform autodidactic experiences and open education? https://doi.org/10.31219/osf.io/9ge8m
Kong, S.-C., Man-Yin Cheung, W., & Zhang, G. (2021). Evaluation of an artificial intelligence literacy course for university students with diverse study backgrounds. Computers and Education: Artificial Intelligence, 2, 100026. https://doi.org/10.1016/j.caeai.2021.100026
Long, D. & Magerko, B. (2020). What is AI Literacy? Competencies and Design Considerations. CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1-16. https://doi.org/10.1145/3313831.3376727
Lyman, F. (1981). The Responsive Classroom Discussion. In A. S. Anderson (Ed.), Mainstreaming Digest (pp. 109-113). College Park, MD: University of Maryland College of Education.
McCoy, L. G., Nagaraj, S., Morgado, F., Harish, V., Das, S., & Celi, L. A. (2020). What do medical students actually need to know about artificial intelligence? npj Digital Medicine, 3(1). https://doi.org/10.1038/s41746-020-0294-7
Ng, D. T. K., Leung, J. K. L., Chu, K. W. S., & Qiao, M. S. (2021a). AI Literacy: Definition, Teaching, Evaluation and Ethical Issues. Proceedings of the Association for Information Science and Technology, 58(1), 504-509. https://doi.org/https://doi.org/10.1002/pra2.487
Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021b). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041. https://doi.org/10.1016/j.caeai.2021.100041
OpenAI. (2023). Introducing ChatGPT. OpenAI. https://openai.com/blog/chatgpt
Samaila, K., Tsong, C. K., Masood, M., & Bervell, B. (2024). Think-pair-share based flipped classroom: A model for improving students’ learning achievement and self-efficacy. Journal of Digital Educational Technology, 4(1), ep2410. https://doi.org/10.30935/jdet/14422
Sharma, H. L., & Saarsar, P. (2018). TPS (think-pair–share): An effective cooperative learning strategy for unleashing discussion in classroom interaction. International Journal of Research in Social Sciences, 8(5), 91-100. https://www.researchgate.net/publication/325545360
Southworth, J., Migliaccio, K., Glover, J., Glover, J. N., Reed, D., McCarty, C., Brendemuhl, J., & Thomas, A. (2023). Developing a model for AI Across the curriculum: Transforming the higher education landscape via innovation in AI literacy. Computers and Education: Artificial Intelligence, 4, 100127. https://doi.org/10.1016/j.caeai.2023.100127
Ulandari, L., Amry, Z., & Saragih, S. (2019). Development of learning materials based on realistic mathematics education approach to improve students’ mathematical problem-solving ability and self-efficacy. International Electronic Journal of Mathematics Education, 14(2), 375- 383. https://doi.org/10.29333/iejme/5721
Wang, B., Rau, P.-L. P., & Yuan, T. (2023). Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 42(9), 1324-1337. https://doi.org/10.1080/0144929x.2022.2072768
Watters, C., & Lemanski, M. K. (2023). Universal skepticism of ChatGPT: a review of early literature on chat generative pre-trained transformers. Frontiers in Big Data, 6. https://doi.org/10.3389/fdata.2023.1224976
Wu, T. T., Hapsari, I. P., & Huang, Y. M. (2025). Effects of incorporating AI chatbots into think–pair–share activities on EFL speaking anxiety, language enjoyment, and speaking performance. Computer Assisted Language Learning, 1-39. https://doi.org/10.1080/09588221.2025.2478271
Yue, M., Jong, M. S.-Y., & Dai, Y. (2022). Pedagogical Design of K-12 Artificial Intelligence Education: A Systematic Review. Sustainability, 14(23), 15620. https://doi.org/10.3390/su142315620
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 มหาวิทยาลัยสุโขทัยธรรมาธิราช

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. ทรรศนะและข้อคิดเห็นใด ๆ ที่ปรากฏอยู่ในวารสาร ECT Education and Communication Technology Journal เป็นของผู้เขียนโดยเฉพาะ สำนักเทคโนโลยีการศึกษา มหาวิทยาลัยสุโขทัยธรรมาธิราช และกองบรรณาธิการไม่จำเป็นต้องเห็นพ้องด้วย
2. กองบรรณาธิการของสงวนลิขสิทธิ์ในการบรรณาธิการข้อเขียนทุกชิ้น เพื่อความเหมาะสมในการจัดพิมพ์เผยแพร่