Factors Influencing the Acceptance of Metaverse Innovation for Education among Undergraduate Students
Keywords:
Metaverse, The technology acceptance model (TAM), Perceived ease of useAbstract
This research aims to: 1) study the factors affecting the acceptance of educational metaverse innovations by graduate students, and 2) compare the factors that have the greatest impact on their acceptance of such innovations. The population consisted of graduate students from universities in Thailand, and the sample comprised 950 graduate students from various universities. A questionnaire was used as the research instrument and data were collected via mail and online. Descriptive statistical analysis and confirmatory factor analysis were employed.
The research found that the most influential factor was perceived ease of use, with a prediction coefficient of .977. This was followed by perceived benefits, with a prediction coefficient of .956, and finally by social influence, with a prediction coefficient of .886. The developed model for measuring the factors affecting the acceptance of educational metaverse innovations by graduate students was found to be consistent with the empirical data. By considering the analytical index criteria as follows, there is a value = 35.838, df = 27, p-value = .119, relative
= 1.327, GFI = .994, CFI = .999, NFI =.996, RMSEA = .019 and RMR = .005
References
สำนักงานปลัดกระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัย และนวัตกรรม. (2565). รายงานประจำปี 2565 กระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัย และนวัตกรรม. https://www.mhesi.go.th/index.php/all-media/book-ministry/9208-2565-16.html
Alismaiel, O. A., Cifuentes-Faura, J., & Al-Rahmi, W. M. (2022). Social media technologies used for education: An empirical study on TAM model during the COVID-19 pandemic. Frontiers in Education, 7, 1-12. https://doi.org/10.3389/feduc.2022.882831
Baby, A., & Kannammal, A. (2020). Network path analysis for developing an enhanced TAM model: A user-centric e-learning perspective. Computers in Human Behavior, 107, 1-7. https://doi.org/10.1016/j.chb.2019.07.024
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
Richter, E., Hußner, I., Huang, Y., Richter, D., & Lazarides, R. (2022). Video-based reflection in teacher education: Comparing virtual reality and real classroom videos. Computers & Education, 190, 1-12. https://doi.org/10.1016/j.compedu.2022.104601
Sadeck, O. (2022). Technology adoption model: Is use/non-use a case of technological affordances or psychological disposition or pedagogical reasoning in the context of teaching during the COVID-19 pandemic period?. Frontiers in Education, 7, 2-14. https://doi.org/10.3389/feduc.2022.906195
Speicher, M., Hall, B. D., & Nebeling, M. (2019). What is mixed reality? In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Paper 537, pp. 1-15). https://doi.org/10.1145/3290605.3300767
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 มหาวิทยาลัยสุโขทัยธรรมาธิราช

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. ทรรศนะและข้อคิดเห็นใด ๆ ที่ปรากฏอยู่ในวารสาร ECT Education and Communication Technology Journal เป็นของผู้เขียนโดยเฉพาะ สำนักเทคโนโลยีการศึกษา มหาวิทยาลัยสุโขทัยธรรมาธิราช และกองบรรณาธิการไม่จำเป็นต้องเห็นพ้องด้วย
2. กองบรรณาธิการของสงวนลิขสิทธิ์ในการบรรณาธิการข้อเขียนทุกชิ้น เพื่อความเหมาะสมในการจัดพิมพ์เผยแพร่