ทิศทางงานวิจัยในอนาคต: การออกแบบเครือข่ายโลจิสติกส์ย้อนกลับ

Main Article Content

ปิยะวัฒน์ ชนินทร์ตระกูล

บทคัดย่อ

ประเด็นทางด้านเศรษฐกิจ สิ่งแวดล้อม และความรับผิดชอบต่อสังคมมีผลกระทบอย่างมีนัยสำคัญต่อการพัฒนาอย่างรวดเร็วของการวิจัยด้านโลจิสติกส์ย้อนกลับทั้งในแวดวงวิชาการและภาคธุรกิจ โดยเฉพาะอย่างยิ่งแบบจำลองเชิงปริมาณทางธุรกิจจำนวนมากได้ถูกเสนอเพื่อออกแบบเครือข่ายโลจิสติกส์ย้อนกลับ ซึ่งเป็นหนึ่งในสาขาสำคัญของการวิจัยด้านโลจิสติกส์ บทความวิจัยเชิงเอกสารฉบับนี้มีวัตถุประสงค์ คือ 1) เพื่อสังเคราะห์บทความวิจัยที่เกี่ยวกับการออกแบบเครือข่ายโลจิสติกส์ย้อนกลับในช่วงปี ค.ศ. 2009-2017 และ 2) เพื่อแนะนำงานวิจัยและโอกาสการทำวิจัยในอนาคต การวิจัยครั้งนี้ใช้การวิจัยเชิงเอกสารเป็นเครื่องมือในการวิจัยและใช้การวิเคราะห์เนื้อหาเพื่อการวิเคราะห์ข้อมูล จากการสืบค้นวารสารระดับนานาชาติโดยใช้ฐานข้อมูลอิเล็กทรอนิกส์ที่มีมาตรฐานจำนวน 3 ฐานข้อมูล ได้แก่ Science Direct, Emerald Insight และ Academic Search Complete พบว่า มีบทความวิจัยที่เกี่ยวข้องจำนวน 41 เรื่อง ซึ่งตีพิมพ์ในช่วงปี ค.ศ. 2009-2017 และบทความวิจัยเหล่านี้สามารถจัดหมวดหมู่เป็น 4 สาขางานวิจัยที่สำคัญ ได้แก่ 1) แบบจําลองเชิงเส้นตรงจํานวนเต็มแบบผสม (Mixed Integer Linear Programming Model) สำหรับการออกแบบเครือข่ายโลจิสติกส์ย้อนกลับ 2) แบบจำลองคลุมเครือหรือฟัซซี (Fuzzy Programming Model) สำหรับการออกแบบเครือข่ายโลจิสติกส์ย้อนกลับ 3) แบบจำลองสโตแคสติก (Stochastic Model) สำหรับการออกแบบเครือข่ายโลจิสติกส์ย้อนกลับ และ 4) การออกแบบเครือข่ายโลจิสติกส์ย้อนกลับโดยการวิเคราะห์ลักษณะผู้เล่นต่าง ๆ

Article Details

บท
บทความวิจัย (Research Article)

References

Amin, S., & Zhang, G. (2012). A proposed mathematical model for closed-loop network configuration based on product life cycle. International Journal of Advanced Manufacturing Technology, 58(5-8), 791-801.

Amin, S. H., & Baki, F. (2017). A facility location model for global closed-loop supply chain network design. Applied Mathematical Modelling, 41, 316-330.

Ayvaz, B., Bolat, B., & Aydın, N. (2015). Stochastic reverse logistics network design for waste of electrical and electronic equipment. Resources, Conservation and Recycling, 104, 391-404.

Baykasoğlu, A., & Subulan, K. (2015). An analysis of fully fuzzy linear programming with fuzzy decision variables through logistics network design problem. Knowledge-Based Systems, 90, 165-184.

Bryman, A., & Bell, E. (2007). Business research methods (2nd ed.). Oxford: Oxford University Press.

Chanintrakul, P., Coronado-Mondragon, A. E., Lalwani, C. S., & Wong, C. Y. (2009). Reverse logistics network design: A state-of-the-art literature review. International Journal of Business Performance and Supply Chain Modelling, 1(1), 61-81.

Chen, Y. W., Wang, L. C., Wang, A., & Chen, T. L. (2017). A particle swarm approach for optimizing a multi-stage closed loop supply chain for the solar cell industry. Robotics and Computer-Integrated Manufacturing, 43, 111-123.

Dai, Z., & Dai, H. M. (2016). Bi-objective closed-loop supply chain network design with risks in a fuzzy environment. Journal of Industrial & Production Engineering, 33(3), 169-180.

De Brito, M. P., & Dekker, R. (2004). A framework for reverse logistics. In R. Dekker, M. Fleischmann, K. Inderfurth, & L. N. Van Wassenhove (Eds.), Reverse logistics: Quantitative models for closed-loop supply chain (pp. 1-27). Berlin: Springer.

Dekker, R., Fleischmann, M., Inderfurth, K., & Van Wassenhove, L. N. (2004). Quantitative models for reverse logistics decision making. In R. Dekker, M. Fleischmann, K. Inderfurth, & L. N. Van Wassenhove (Eds.), Reverse logistics: Quantitative models for closed-loop supply chain (pp. 29-41). Berlin: Springer.

Dowlatshahi, S. (2000). Developing a theory of reverse logistics. Interfaces, 30(3), 143-155.

Easwaran, G., & Üster, H. (2009). Tabu search and benders decomposition approaches for a capacitated closed-loop supply chain network design problem. Transportation Science, 43(3), 301-320.

El-Sayed, M., Afia, N., & El-Kharbotly, A. (2010). A stochastic model for forward–reverse logistics network design under risk. Computers & Industrial Engineering, 58(3), 423-431.

Eskandarpour, M., Masehian, E., Soltani, R., & Khosrojerdi, A. (2014). A reverse logistics network for recovery systems and a robust metaheuristic solution approach. International Journal of Advanced Manufacturing Technology, 74(9-12), 1393-1406

Eskandarpour, M., Nikbakhsh, E., & Zegordi, S.H. (2014). Variable neighborhood search for the bi-objective post-sales network design problem: A fitness landscape analysis approach. Computers & Operations Research, 52, 300-314.

Eskandarpour, M., Zegordi, S. H., & Nikbakhsh, E. (2013). A parallel variable neighborhood search for the multi-objective sustainable post-sales network design problem. International Journal of Production Economics, 145(1), 117-131.

Fleischmann, M. (2003). Reverse logistics network structures and design. In V. D. R. Guide Jr., & L. N. Van Wassenhove (Eds.), Business aspects of closed-loop supply chains: Exploring the issues (vol. 2) (pp. 117-148). Pittsburgh, PA: Carnegie Mellon University Press.

Fleischmann, M., Bloemhof-Ruwaard, J. M., Beullens, P., & Dekker, R. (2004). Reverse logistics network design. In R. Dekker, M. Fleischmann, K. Inderfurth, & L. N. Van Wassenhove (Eds.), Reverse logistics: Quantitative models for closed-loop supply chain (pp. 65-94). Berlin: Springer.

Fleischmann, M., Krikke, H. R., Dekker, R., & Flapper, S. D. P. (2000). A Characterisation of logistics networks for product recovery. Omega, 28(6), 653-666.

Fu, P., Li, H., Wang, X., Luo, J., Zhan, S. L., & Zuo, C. (2017). Multiobjective location model design based on government subsidy in the recycling of CDW. Mathematical Problems in Engineering, 2017, 1-9. doi: 10.1155/2017/9081628

Govindan, K., Paam, P., & Abtahi, A. R. (2016). A fuzzy multi-objective optimization model for sustainable reverse logistics network design. Ecological Indicators, 67, 753-768.

Hatefi, S. M., & Jolai, F. (2014). Robust and reliable forward–reverse logistics network design under demand uncertainty and facility disruptions. Applied Mathematical Modelling, 38(9), 2630-2647.

John, S. T., Sridharan, R., & Kumar, P. N. R. (2017). Multi-period reverse logistics network design with emission cost. The International Journal of Logistics Management, 28(1), 127-149.

Kalaitzidou, M. A., Longinidis, P., & Georgiadis, M. C. (2015). Optimal design of closed-loop supply chain networks with multifunctional nodes. Computers & Chemical Engineering, 80, 73-91.

Kannan, D., Diabat, A., Alrefaei, M., Govindan, K., & Yong, G. (2012). A carbon footprint based reverse logistics network design model. Resources, Conservation and Recycling, 67, 75-79.

Keyvanshokooh, E., Fattahi, M., Seyed-Hosseini, S. M., & Tavakkoli-Moghaddam, R. (2013). A dynamic pricing approach for returned products in integrated forward/reverse logistics network design. Applied Mathematical Modelling, 37(24), 10182-10202.

Kilic, H. S., Cebeci, U., & Ayhan, M. B. (2015). Reverse logistics system design for the waste of electrical and electronic equipment (WEEE) in Turkey. Resources, Conservation and Recycling, 95, 120-132.

Kolbin, V. V. (1977). Stochastic programming. Dordrecht: D. Reidel Publishing.

Lee, D. H., Dong, M., & Bian, W. (2010). The design of sustainable logistics network under uncertainty. International Journal of Production Economics, 128(1), 159-166.

Li, S., Wang, N., He, Z., Che, A., & Ma, Y. (2012). Design of a multiobjective reverse logistics network considering the cost and service level. Mathematical Problems in Engineering, 2012, 1-21.

Listes, O., & Dekker, R. (2005). A stochastic approach to a case study for product recovery network design. European Journal of Operational Research, 160(1), 268-287.

Liu, D. (2014). Network site optimization of reverse logistics for E-commerce based on genetic algorithm. Neural Computing & Applications, 25(1), 67-71.

Mirakhorli, A. (2014). Fuzzy multi-objective optimization for closed loop logistics network design in bread-producing industries. International Journal of Advanced Manufacturing Technology, 70(1-4), 349-362.

Pazhani, S., Ramkumar, N., Narendran, T. T., & Ganesh, K. (2013). A bi-objective network design model for multi-period, multi-product closed-loop supply chain. Journal of Industrial & Production Engineering, 30(4), 264-280.

Pishvaee, M. S., Farahani, R. Z., & Dullaert, W. (2010). A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Computers & Operations Research, 37(6), 1100-1112.

Pishvaee, M. S., Kianfar, K., & Karimi, B. (2010). Reverse logistics network design using simulated annealing. International Journal of Advanced Manufacturing Technology, 47(1-4), 269-281.

Pishvaee, M. S., Rabbani, M., & Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35(2), 637-649.

Sadjadi, S. J., Soltani, R., & Eskandarpour, A. (2014). Location based treatment activities for end of life products network design under uncertainty by a robust multi-objective memetic-based heuristic approach. Applied Soft Computing, 23, 215-226.

Sasikumar, P., & Kannan, G. (2008). Issues in reverse supply chains, part I: End-of-life product recovery and inventory management - an overview. International Journal of Sustainable Engineering, 1, 154-172.

Sasikumar, P., Kannan, G., & Haq, A. N. (2010). A multi-echelon reverse logistics network design for product recovery-a case of truck tire remanufacturing. International Journal of Advanced Manufacturing Technology, 49(9-12), 1223-1234.

Simchi-Levi, D, Kaminsky, P, & Simchi-Levi, E. (2008). Designing and managing the supply chain: Concepts, strategies and case studies (3rd Ed.). New York: McGraw Hill.

Soleimani, H., Seyyed-Esfahani, M., & Shirazi, M. (2013). Designing and planning a multi-echelon multi-period multi-product closed-loop supply chain utilizing genetic algorithm. International Journal of Advanced Manufacturing Technology, 68(1-4), 917-931.

Subulan, K., Baykasoğlu, A., & Saltabaş, A. (2014). An improved decoding procedure and seeker optimization algorithm for reverse logistics network design problem. Journal of Intelligent & Fuzzy Systems, 27(6), 2703-2714.

Subulan, K., Taşan, A. S., & Baykasoğlu, A. (2012). Fuzzy mixed integer programming model for medium-term planning in a closed-loop supply chain with remanufacturing option. Journal of Intelligent & Fuzzy Systems, 23(6), 345-368.

Subulan, K., Taşan, A. S., & Baykasoğlu, A. (2015). A fuzzy goal programming model to strategic planning problem of a lead/acid battery closed-loop supply chain. Journal of Manufacturing Systems, 37, 243-264.

Tao, Z. G., Guang, Z. Y., Hao, S., Song, H. J., & Xin, D. G. (2015). Multi-period closed-loop supply chain network equilibrium with carbon emission constraints. Resources, Conservation and Recycling, 104, 354-365.

Tavakkoli-Moghaddam, R., Sadri, S., Pourmohammad-Zia, N., & Mohammadi, M. (2015). A hybrid fuzzy approach for the closed-loop supply chain network design under uncertainty. Journal of Intelligent & Fuzzy Systems, 28(6), 2811-2826.

Wakolbinger, T., Toyasaki, F., Nowak, T., & Nagurney, A. (2014). When and for whom would e-waste be a treasure trove? Insights from a network equilibrium model of e-waste flows. International Journal of Production Economics, 154, 263-273.

XiaoYan, Q., Yong, H., Qinli, D., & Stokes, P. (2012). Reverse logistics network design model based on e-commerce. International Journal of Organizational Analysis, 20(2), 251-261.

Yang, C. H., Chen, D. T., Huang, Z. L., & Liu, H. B. (2016). Design of a third-party reverse logistics network under a carbon tax scheme. Journal of Engineering Science & Technology Review, 9(5), 126-134.

Yu, H., & Solvang, W. (2016). A general reverse logistics network design model for product reuse and recycling with environmental considerations. International Journal of Advanced Manufacturing Technology, 87(9-12), 2693-2711.

Zarandi, M., Sisakht, A., & Davari, S. (2011). Design of a closed-loop supply chain (CLSC) model using an interactive fuzzy goal programming. International Journal of Advanced Manufacturing Technology, 56(5-8), 809-821.

Zhou, Y., Chan, C. K., Wong, K. H., & Lee, Y. C. E. (2015). Intelligent optimization algorithms: A stochastic closed-loop supply chain network problem involving oligopolistic competition for multiproducts and their product flow routings. Mathematical Problems in Engineering, 2015, 1-22.