ผลกระทบของโมเดลภาษาขนาดใหญ่: โอกาสและความท้าทายของนักแปล

ผู้แต่ง

  • ชาริสร์ เสนาป่า หลักสูตรสาขาวิชาภาษาอังกฤษ คณะมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยราชภัฏอุตรดิตถ์
  • ปาณธีร์ สัตยาภรณ์ หลักสูตรสาขาวิชาภาษาอังกฤษ คณะมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยราชภัฏอุตรดิตถ์
  • ลลิตา สัมฤทธิตานนท์ หลักสูตรสาขาวิชาภาษาอังกฤษ คณะมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยราชภัฏอุตรดิตถ์

คำสำคัญ:

โมเดลภาษาขนาดใหญ่, การแปลโดยปัญญาประดิษฐ์, คุณภาพการแปล, นักแปลมนุษย์, การประมวลผลภาษาธรรมชาติ

บทคัดย่อ

การศึกษานี้มีวัตถุประสงค์เพื่อวิเคราะห์บทบาทของ AI โมเดลภาษาขนาดใหญ่ (LLM) ในการแปลภาษา โดยมุ่งศึกษาความสามารถและความเสี่ยงที่อาจเกิดขึ้นต่อนักแปลที่เป็นมนุษย์ โดย LLM ได้รับการฝึกฝนด้วยข้อมูลขนาดมหาศาลในหลายภาษา มีความสามารถอันยอดเยี่ยมในการประมวลผลภาษาธรรมชาติรวมถึงการแปล ทำให้เกิดการพึ่งพา LLM ในการแปลมากขึ้น ก่อให้เกิดความกังวลเกี่ยวกับการเข้ามาแทนที่บทบาทของอาชีพนักแปล ดำเนินการศึกษาโดยวิเคราะห์ข้อได้เปรียบและข้อเสียเปรียบของ LLM ในการแปลข้อความระหว่างภาษาไทยและภาษาอังกฤษเปรียบเทียบกับนักแปลที่เป็นมนุษย์ ผลการศึกษาพบว่า แม้ LLM จะมีความรวดเร็วและสามารถแปลภาษามากกว่า 100 ภาษาได้อย่างมีประสิทธิภาพ แต่ก็ยังมีความท้าทายในเรื่องของการรักษาความเหมาะสมทางวัฒนธรรม ความสม่ำเสมอทางภาษา และความเข้าใจในบริบทของงานแปล การศึกษานี้ยังกล่าวถึงอคติของ LLM และความเสี่ยงที่ LLM จะสร้างงานแปลที่ไม่ถูกต้องแต่ดูน่าเชื่อถือ (hallucinations)
นักแปลยังคงมีข้อได้เปรียบในการจัดการกับงานแปลที่ซับซ้อนและต้องอาศัยบริบท รวมถึงการรักษาคุณภาพการแปลให้สูงสุด อย่างไรก็ตาม ความสามารถของ LLM ในการผลิตงานแปลอย่างรวดเร็วทำให้เป็นทางเลือกที่แข่งขันได้ โดยเฉพาะในงานแปลทั่วไปที่มีปริมาณมากการศึกษาสรุปด้วยข้อเสนอแนะให้นักแปลปรับตัวโดยพัฒนาทักษะเฉพาะทาง เรียนรู้อย่างต่อเนื่อง และใช้เครื่องมือ LLM เพื่อเสริมสร้างประสิทธิภาพในการทำงาน

คำสำคัญ: โมเดลภาษาขนาดใหญ่, การแปลโดยปัญญาประดิษฐ์, คุณภาพการแปล, นักแปลมนุษย์, การประมวลผลภาษาธรรมชาติ

เอกสารอ้างอิง

ป้อมเพชร ตาณังกร และสัญชัย สุลักษณานนท์. (2565). การศึกษาการแปลวิเศษณานุประโยคแบบโครงสร้างในภาษาฝรั่งเศสด้วยเครื่องมือแปลภาษา Google Translate. วารสารสมาคมครูภาษาฝรั่งเศสแห่งประเทศไทยในพระราชูปถัมภ์ฯ, 143(45), 27-49.

รัชดา ปลาบู่ทอง. (2551). การศึกษาการใช้คำลงท้ายภาษาไทยในวรรณกรรมแปลเรื่อง อาร์ทิมิส ฟาวล์, อาร์ทิมิส ฟาวล์ ตอนมหันตภัยในอาร์กติก และอาร์ทิมิส ฟาวล์ ตอนรหัสลับนิรันดร. (วิทยานิพนธ์มหาบัณฑิต, มหาวิทยาลัยมหิดล]. [DOI: https://doi.nrct.go.th/ListDoi/listDetail?Resolve_DOI=10.14457/MU.the.2008.210].

สมบัติ ศิริจันดา และ จักกเมธ พวงทอง. (2564). ลักษณะเฉพาะของภาษาไทยที่มีผลต่อการแปลเป็นภาษาอังกฤษ: กรณีศึกษาของการแปลทางวิชาการ. วารสารศิลปศาสตร์ราชมงคลสุวรรณภูมิ, 3(3), 370-383.

SCB 10X. (2567). ส่องไอเดียพัฒนา AI: ไปดูกันว่า Typhoon (Thai LLM จาก SCB 10X) สามารถนำไปพัฒนานวัตกรรมอะไรได้บ้าง. ค้นเมื่อ 2 พฤษภาคม 2567, จาก https://www.scb10x.com/blog/explore-ai-development-ideas-typhoon-1-5x-thai-llm-scb-10x.

Alphanome.ai. (2023). Understanding token limits in large language models: Use cases, techniques, and overcoming limitations. Retrieved 24 July 2024, from https://www.alphanome.ai/post/understanding-token-limits-in-large-language-models-usecases-techniques-and-overcoming-limitatios.

ASTM International. (2023). Standard guide for quality assurance in translation. Retrieved 2 May 2024, from https://www.astm.org/f2575-14.html.

Baker, M., & Saldanha, G. (Eds.). (2009). Routledge encyclopedia of translation studies. (2nd ed.). New York: Routledge.

Bowker, L. (2024, 16 July). BTi Public Talk: Research trends in translation technology. Retrieved 22 July 2024, from https://fb.watch/ttaMad607U/.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D M., Wu, J., Winter, C,... Amodei, D. (2020). Language models are few-shot learners. Retrieved 6 May 2024, from https://arxiv.org/pdf/2005.14165.

Castilho, S. (2024). BTi Public Talk: The translation profession in the age of AI: Realities and possibilities. Retrieved 6 May 2024, from https://fb.watch/tuArI4nVSZ/.

Deepchecks. (2023). Five approaches to solve LLM token limits. Retrieved 22 July 2024, from https://deepchecks.com/5-approaches-to-solve-llm-token-limits/.

Dokutech Translations. (n.d.). LLM vs NMT: An in-depth analysis of machine translation models. Retrieved 1 December 2024 from https://dokutechtranslations.com/en/llm-vs-nmt-anin-depth-analysis-of-machine-translation-models/.

Drugan, J. (2013). Quality in professional translation: Assessment and improvement. London: Bloomsbury.

Feng, Z., Zhang, Y., Li, H., Liu, W., Lang, J., Feng, Y., Wu, J., & Liu, Z. (2024). Improving LLM-based machine translation with systematic self-correction. Retrieved 2 May 2024, from https://arxiv.org/pdf/2402.16379v2.

Haan, K. (2023). Over 75% of consumers are concerned about misinformation from artificial intelligence. Retrieved 25 July 2024, from https://www.forbes.com/advisor/business/artificial-intelligence-consumer-sentiment/#over_75_are_concerned_about_artificial_intelligence_causing_job_loss_section.

Jiang, C. (2023). Investigation on the application of artificial intelligence large language model in translation tasks. In S. Yacob et al. (Eds.), Proceedings of the 2023 7th International Seminar on Education, Management and Social Sciences (ISEMSS 2023), (pp. 1342-1351).

Lee, T. K. (2023). Artificial intelligence and posthumanist translation: ChatGPT versus the translator. Retrieved 1 December 2024 from https://doi.org/10.1515/applirev-2023-0122.

Mahidol University International College. (n.d.). Large language models (LLM)-What are they?. Retrieved 2 July 2024, from https://muic.mahidol.ac.th/eng/large-language-modelsllm-what-are-they/.

Manyika, J., & Sneader, K. (2018). AI, automation, and the future of work: Ten things to solve for. Retrieved 2 July 2024, from https://www.mckinsey.com/featured-insights/future-ofwork/ai-automation-and-the-future-of-work-ten-things-tosolve-for/.

Mao, J. (2022). Differentiated measurements for fatigue and demotivation in translation process. Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas (Workshop 1: Empirical Translation Process Research), (pp. 1-14).

Marino, S. (2023, March 31). Translation rates 2023 – Complete (and honest) answer to why translation prices are so wildly different. Retrieved 12 December 2024, from https://abctranslations.com/translation-rates-2023-complete-andhonest-answer-to-why-translation-prices-are-so-wildly-different.

Maslej, N., Fattorini, L., Perrault, R., Parli, V., Reuel, A., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Niebles, J. C., Shoham, Y., & Clark, J. (2024). The AI index 2024 annual report (p. 479). AI Index Steering Committee, Institute for Human-Centered AI, Stanford University.

Moneus, A. M., & Sahari, Y. (2024). Artificial intelligence and human translation: A contrastive study based on legal texts. Retrieved 12 May 2024, from https://doi.org/10.1016/j.heliyon.2024.e28106.

NIST Multimodal Information Group. (2010). NIST 2005 Open Machine Translation (OpenMT) Evaluation LDC2010T14. Retrieved 2 May 2024, from https://catalog.ldc.upenn.edu/docs/LDC2010T14/DARPATIDESMT05EvalPlan_v1-1.pdf.

OpenAI. (2023). GPT-4 technical report. Retrieved 2 May 2024, from https:// openai.com/research/gpt-4.

OpenAI. (n.d.). Text generation. Retrieved 2 May 2024, from https://platform. openai.com/docs/guides/text-generation.

Pacific International Translations. (n.d.). Expected translation times by professional translators. Retrieved 2 May 2024, from https://www.pactranz.com/translation- times/.

ReiB, K., & Vermeer, H. J. (2014). Towards a general theory of translational action: Skopos theory explained (C. Nord, Trans.; M. Dudenhöfer, English reviewer). New York: Routledge.

Roberts, I. G., Watumull, J., & Chomsky, N. (2023). Xenolinguistics. New York: Routledge.

SCB 10X. (2024). Behind the working of large language model. Retrieved 2 May 2024, from https://www.scb10x.com/blog/large-language-model-explained.

Stefani, E. (2024). NMT vs. LLM: Which translation technology suits your needs?. Retrieved 2 November 2024, from https://www.languageline.com/blog/nmt-vs.-llm-which-translationtechnology-suits-your-needs.

Toolify. (2024). Mastering token limits in large language models. Retrieved 15 June 2024, from https://www.toolify.ai/ainews/mastering-token-limits-in-large-languagemodels-418929.

Wang, L. (2023). The impacts and challenges of artificial intelligence translation tool on translation professionals. Retrieved 12 December 2024, from https://doi.org/10.1051/shsconf/202316302021.

Zhang, X., Li, S., Hauer, B., Shi, N., & Kondrak, G. (2023). Don’t trust ChatGPT when your question is not in English: A study of multilingual abilities and types of LLMs. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, (pp. 7915-7927).

ดาวน์โหลด

เผยแพร่แล้ว

2024-12-31

รูปแบบการอ้างอิง

เสนาป่า ช., สัตยาภรณ์ ป., & สัมฤทธิตานนท์ ล. (2024). ผลกระทบของโมเดลภาษาขนาดใหญ่: โอกาสและความท้าทายของนักแปล. วารสารช่อพะยอม, 35(3), 282–307. สืบค้น จาก https://so01.tci-thaijo.org/index.php/ejChophayom/article/view/275821

ฉบับ

ประเภทบทความ

บทความวิชาการ